14,697 research outputs found

    Stationary generalized Kerr-Schild spacetimes

    Get PDF
    In this paper we have applied the generalized Kerr-Schild transformation finding a new family of stationary perfect-fluid solutions of the Einstein field equations. The procedure used combines some well-known techniques of null and timelike vector fields, from which some properties of the solutions are studied in a coordinate-free way. These spacetimes are algebraically special being their Petrov types II and D. This family includes all the classical vacuum Kerr-Schild spacetimes, excepting the plane-fronted gravitational waves, and some other interesting solutions as, for instance, the Kerr metric in the background of the Einstein Universe. However, the family is much more general and depends on an arbitrary function of one variable.Comment: 21 pages, LaTeX 2.09. To be published in Journal of Mathematical Physic

    Magnetic defects promote ferromagnetism in Zn1-xCoxO

    Full text link
    Experimental studies of Zn1-xCoxO as thin films or nanocrystals have found ferromagnetism and Curie temperatures above room temperature and that p- or n-type doping of Zn1-xCoxO can change its magnetic state. Bulk Zn1-xCoxO with a low defect density and x in the range used in experimental thin film studies exhibits ferromagnetism only at very low temperatures. Therefore defects in thin film samples or nanocrystals may play an important role in promoting magnetic interactions between Co ions in Zn1-xCoxO. The electronic structures of Co substituted for Zn in ZnO, Zn and O vacancies, substituted N and interstitial Zn in ZnO were calculated using the B3LYP hybrid density functional in a supercell. The B3LYP functional predicts a band gap of 3.34 eV for bulk ZnO, close to the experimental value of 3.47 eV. Occupied minority spin Co 3d levels are at the top of the valence band and unoccupied levels lie above the conduction band minimum. Majority spin Co 3d levels hybridize strongly with bulk ZnO states. The neutral O vacancy and interstitial Zn are deep and shallow donors, respectively. The Zn vacancy is a deep acceptor and the acceptor level for substituted N is at mid gap. The possibility that p- or n-type dopants promote exchange coupling of Co ions was investigated by computing total energies of magnetic states of ZnO supercells containing two Co ions and an oxygen vacancy, substituted N or interstitial Zn in various charge states. The neutral N defect and the singly-positively charged O vacancy are the only defects which strongly promote ferromagnetic exchange coupling of Co ions at intermediate range.Comment: 9 pages, 11 figure

    Field quantization for chaotic resonators with overlapping modes

    Get PDF
    Feshbach's projector technique is employed to quantize the electromagnetic field in optical resonators with an arbitray number of escape channels. We find spectrally overlapping resonator modes coupled due to the damping and noise inflicted by the external radiation field. For wave chaotic resonators the mode dynamics is determined by a non--Hermitean random matrix. Upon including an amplifying medium, our dynamics of open-resonator modes may serve as a starting point for a quantum theory of random lasing.Comment: 4 pages, 1 figur

    The permutation group S_N and large Nc excited baryons

    Get PDF
    We study the excited baryon states for an arbitrary number of colors Nc from the perspective of the permutation group S_N of N objects. Classifying the transformation properties of states and quark-quark interaction operators under S_N allows a general analysis of the spin-flavor structure of the mass operator of these states, in terms of a few unknown constants parameterizing the unknown spatial structure. We explain how to perform the matching calculation of a general two-body quark-quark interaction onto the operators of the 1/Nc expansion. The inclusion of core and excited quark operators is shown to be necessary. Considering the case of the negative parity L=1 states transforming in the MS of S_N, we discuss the matching of the one-gluon and the Goldstone-boson exchange interactions.Comment: 38 pages. Final version to be published in Physical Review

    Rastall Cosmology and the \Lambda CDM Model

    Full text link
    Rastall's theory is based on the non-conservation of the energy-momentum tensor. We show that, in this theory, if we introduce a two-fluid model, one component representing vacuum energy whereas the other pressureless matter (e.g. baryons plus cold dark matter), the cosmological scenario is the same as for the \Lambda CDM model, both at background and linear perturbative levels, except for one aspect: now dark energy may cluster. We speculate that this can lead to a possibility of distinguishing the models at the non-linear perturbative level.Comment: 9 pages, 1 figure. Accepted for publication in Physical Review
    • …
    corecore