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We study the excited baryon states for an arbitrary number of colors Nc from the perspective of the

permutation group SN of N objects. Classifying the transformation properties of states and quark-quark

interaction operators under SN allows a general analysis of the spin-flavor structure of the mass operator of

these states, in terms of a few unknown constants parametrizing the unknown spatial structure. We explain

how to perform the matching calculation of a general two-body quark-quark interaction onto the operators

of the 1=Nc expansion. The inclusion of core and excited quark operators is shown to be necessary.

Considering the case of the negative parity L ¼ 1 states transforming in the MS of SN , we discuss the

matching of the one-gluon and the Goldstone-boson exchange interactions.
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I. INTRODUCTION

The nonrelativistic quark model (NRQM) [1,2] has been
used with a varying degree of success to describe the
baryonic states, both for ground state and excited [3]
baryons. Recently, the NRQM gained additional signifi-
cance in the baryon sector, where it provides an explicit
realization of the contracted SUð4Þc symmetry, which be-
comes manifest in the large Nc limit [4]. This symmetry
connects states with different spins and isospins, and pro-
vides an important organizing principle for the construc-
tion of a systematic expansion in 1=Nc for physical
quantities such as masses and couplings. Many detailed
applications to the physics of ground state baryons, both
heavy and light, have been presented.

The 1=Nc expansion has been applied also to orbitally
excited baryons, up to subleading order in 1=Nc [5–11].
The structure of the operators contributing to the physical
properties of these states is more complicated. The con-
struction of these operators makes use of the decomposi-
tion of the spin-flavor states into ‘‘core’’ and ‘‘excited’’
quark subsystems. The operators appearing in the 1=Nc
expansion are the most general structures which can be
constructed from SUð4Þ generators acting on the core and
excited quarks.

The construction of the states and operators for excited
states presented in Ref. [7] has been inspired by the quark
model picture of the excited states. To our knowledge a
formal justification in terms of an underlying symmetry is
still lacking. Such a symmetry argument would be desir-
able for several reasons. First, it would help in order to
establish the completeness of the set of operators contrib-
uting to any given order in 1=Nc. Second, such a symmetry
argument could point the way for the treatment of higher
excitations with a more complicated spin-flavor structure.
Finally, in several recent papers [12,13] the validity of the

usual approach based on the core-excited quark decompo-
sition has been questioned, and a symmetry argument
should settle the objections raised in these works.
In this paper we use the simple observation that the spin-

flavor states of a system of N quarks can be classified into
irreps of SUð4Þ � SsfN , with SN the permutation group of N
objects. Including also the orbital degrees of freedom, the
complete permutation symmetry is SN � SorbN � SsfN , the
diagonal subgroup of the permutations acting on both
orbital and spin-flavor degrees of freedom. Of course,
although SN is a good symmetry of the quark model
Hamiltonian, SsfN is not, and mixing between different

irreps can occur in general (configuration mixing).
The permutation symmetry SsfN has nontrivial implica-

tions. It constrains the form of the allowed operators which
can contribute to any given matrix element. The spin-flavor
structure of the mass operator for these states contains only
those spin-flavor operatorsOsf which appear in the decom-
position of the interaction Hamiltonian H ¼ P

RR
orb
R Osf

R

under SorbN � SsfN .
The ground state baryons transform in the singlet irrep

of SsfN , and thus the only operators with nonzero matrix

elements are also singlets of SsfN . More interesting predic-
tions are obtained for the orbitally excited baryons, which
transform nontrivially under SsfN . We consider in some

detail the states transforming in the [N � 1, 1] (MS) irrep
of SsfN .
We perform the explicit decomposition of the most

general two-body quark-quark interaction into irreps of
SorbN � SsfN , which gives a general expression for the mass

operator of the excited states. We present explicit results
for the one-gluon exchange, and one Goldstone-boson
exchange mediated quark-quark interaction. This general-
izes the Nc ¼ 3 results of Collins and Georgi [14] to
arbitrary Nc and also allows to extract the otherwise im-
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plicit Nc dependence of the operators and their matrix
elements.

The analysis based on SN makes the connection to the
1=Nc expansion particularly simple, allowing the matching
of any microscopic quark-quark interaction onto the op-
erators of the 1=Nc expansion. In addition to the class of
operators transforming as [N] and [N � 1, 1] of SsfN , pre-
viously considered in [14] for Nc ¼ 3, we also discuss a
new class of operators transforming in the [N � 2, 2],
[N � 2, 1, 1] irreps, which appear only for Nc > 3. The
matching calculation for two different models confirms the
scalings and the completeness of the set of effective op-
erators considered in [7]. We find that the criticism of
Matagne and Stancu [12,13] of the usual 1=Nc expansion
for excited baryons [5–11] is unfounded, and the disagree-
ment with existing work is due to ignoring operators trans-
forming like nonsinglets under SsfN .

As an application of our results, we point out that the
models for quark dynamics discussed here make definite
predictions for the phenomenology of the excited baryons,
in the form of a hierarchy of the coefficients of operators in
the 1=Nc expansion. Comparing with the results of a fit we
conclude that at leading order in 1=Nc the Goldstone-
boson exchange model is favored.

II. THE Ssf
N PERMUTATION SYMMETRY

We describe in this section the SN transformation prop-
erties of the spin-flavor wave function of a system of N ¼
Nc quarks with spin and isospin. For simplicity we con-
sider only two light quark flavors u, d and assume isospin
symmetry. In the nonrelativistic quark model, the spin-
flavor wave functions appear as building blocks for the
total baryon wave function, along with the orbital wave
function. More important, they are relevant in the context
of the 1=Nc expansion, where the quark representation
provides a realization of the large Nc spin-flavor symmetry
[4].

The spin-flavor baryon states are constructed by taking
products of one-body states with spin and isospin

ju"i; ju#i; jd"i; jd#i: (1)

We keep track of the identity of the states of the Nc quarks,
such that in general, a state will not be left invariant under a
permutation of the quarks. For any finite Nc, such a state
will be completely specified by giving its transformation
under the symmetry group SUð4Þ � SN .

For any spin-flavor state, the irreps of the spin-flavor
SUð4Þ and permutation group are related such that they
correspond to the same Young tableaux. For example, the
multiplicity of a state with given spin, isospin, and their
projections jS; I;S3; I3i is given by the dimension of the SN
irrep with the same Young diagram as the SUð4Þ irrep. For
this reason it may appear that the spin-flavor irrep is
sufficient to describe the state. However, it will be seen
that the SN information can give constraints on the possible

form of the operators which do not follow from the spin-
flavor structure alone.
We start by considering the ground state baryons. They

transform in the completely symmetric irrep S of SsfN . The
only operators which have nonvanishing matrix elements
between these states transform also in the S irrep of the
permutation group.
Next consider states with nontrivial transformation

under the permutation group. As a first example of such
states consider the nonstrange states in theMS irrep of SsfN .
An explicit analysis of the spin-flavor structure in the
nonrelativistic quark model performed below in Sec. III
shows that these states can be identified with the L ¼ 1
orbitally excited baryons.
Consider the mass operator of these states, and the

constraints imposed on it from the permutation group. It
must transform like R under the permutation group, where
R is any irrep such thatMS� R containsMS. The allowed
irreps must satisfy the following condition (see p. 257 of
[15]): consider the Young diagrams of R and of MS (par-
tition [N � 1, 1]). By removing one box from the R dia-
gram, and the addition of one box to the resulting diagram,
the Young diagram of MS must be obtained. A simple
examination of the respective Young diagrams shows that
this condition is satisfied by the following irreps of SN (see
Appendix A for notations):

R ¼ S;MS; E; A0: (2)

Thus, the most general operator contributing to the mass
operator of these states will be a linear combination of
operators transforming in each of the irreps of SsfN given in
Eq. (2). The S operators contain only building blocks Si,
Ta, Gia for the entire hadron: total hadron spin, isospin,
and the Gia operator. TheMS operators are constructed by
combining operators acting on the excited and core sub-
systems of the hadron consisting of 1 and Nc � 1 quarks,
respectively. Finally, the E and A0 operators have a more
complicated structure, and have not been considered
previously.
In the next section we will show by explicit calculation

in the nonrelativistic quark model how each of these op-
erators is generated from specific models of quark-quark
interactions. We consider in detail two such models, the
one-gluon exchange and the Goldstone-boson exchange
mediated interactions.

III. SN AND THE NONRELATIVISTIC QUARK
MODEL

We consider in this section the spin-flavor structure of
the orbitally excited baryons transforming in the MS irrep
of SsfN in the nonrelativistic quark model with Nc quarks.
For Nc ¼ 3, these states correspond to the negative parity
baryons with L ¼ 1 and transform in the 70� of SUð6Þ (or
the 20� of SUð4Þ). This contains several spin-isospin
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multiplets of SUð2Þ � SUð3Þ � SUð6Þ. Denoting them as
ð2Sþ1ÞF, these multiplets are 48 �2 8 �2 10 �2 1.

We would like to construct these states for arbitrary Nc
quarks, with special attention to their transformation prop-
erties under the permutation group. For generality we will
keep L arbitrary. Fermi statistics constrains the spin-flavor-
orbital wave function to be completely symmetric. Thus
this wave function must transform under the completely
symmetric irrep of SN , the permutation group acting on all
degrees of freedom of the N quarks: orbital, spin, and
flavor. This group is the diagonal subgroup of SorbN � SsfN ,
the product of the permutation groups acting independently
on the orbital and spin-flavor degrees of freedom, respec-
tively. Any symmetric state in orbital-spin-flavor space is
decomposed into a sum of inner products of irreps of
SorbN � SsfN as

S ¼ X
R¼S;MS;���

Rorb � Rsf : (3)

The sum is over states which transform in the same irrep R
under independent permutations of the respective degrees
of freedom. We use here and in the following the notations
of Appendix A for the irreps of the permutation group.

The first term in the sum, with R ¼ S, corresponds to
states with orbital wave functions symmetric under any
exchange of two quarks. These states include the ground
state baryons, and some of their radial excitations.
According to Eq. (3), their spin-flavor wave function is
also completely symmetric under permutations. For two
light quark flavors, this implies that they transform in the
symmetric irrep of SUð4Þ.

A. The MS states and relation to CCGL

Consider next the second term in the sum Eq. (3), cor-
responding to R ¼ MS. They correspond to orbitally ex-
cited baryons, for example, the L ¼ 1 baryons in the 70�.
A basis for the spin-flavor wave function can be con-
structed using the method of the Young operators (see
Appendix A). This can be chosen as the set of N � 1
wave functions, with k ¼ 2; 3; � � � ; N

j�ki ¼ jqki � jiciN�1 � jq1i � jiciN�1; (4)

where jqki denotes the spin-flavor state of the quark k, and
jiciN�1 denotes the spin-flavor state of the subset of N � 1
quarks (‘‘core’’) obtained by removing quark k from the N
quarks. The latter states are symmetric under any permu-
tation of the N � 1 quarks. The states �i are not orthogo-
nal, and have the scalar products

h�ij�ji ¼ Sij; Sij ¼
�
2; i ¼ j
1; i � j

: (5)

The basis states �k have the following transformations
under the action of the transpositions Pij (exchange of the

quarks i, j)

P1j�k ¼
���k ; j ¼ k
�k ��j ; j � k

(6)

Pij�k ¼ �k if ði; jÞ � 1; k (7)

Pik�k ¼ Pki�k ¼ �i if i � 1: (8)

We will adopt these transformation relations as defining a
basis for theMS irrep of SN , both for states and operators.
A similar construction can be used also for the orbital

wave functions with MS permutation symmetry. They
form a set of N � 1 functions and will be denoted as
�mk ð~r1; � � � ; ~rNÞ with k ¼ 2; 3; � � � ; N. The index m ¼
�1, 0 denotes the projection of the orbital angular mo-

mentum ~L along the z axis.
For definiteness we adopt a Hartree representation for

the orbital wave functions, in terms of one-body wave
functions ’sðrÞ for the ground state orbitals, and ’mp ðrÞ
for the orbitally excited quark. The Young operator basis
for the orbital wave functions is given by

�mk ð~r1; � � � ; ~rNÞ ¼ ’mp ð ~rkÞ�N
i¼1;i�k’sð~riÞ

� ’mp ð~r1Þ�N
i¼2’sð ~riÞ: (9)

These basis wave functions have the same transformation
properties under transpositions as the spin-flavor basis
functions, Eqs. (6)–(8). We emphasize that the main results
of our paper do not depend on the use of the Hartree
representation, as explained in more detail below.
The complete spin-flavor-orbital wave function of a

baryon B with mixed-symmetric spin-flavor symmetry is
written as the MS�MS! S inner product of the two
basis wave functions, for the orbital and spin-flavor com-
ponents, respectively. Making explicit the spin-isospin de-
grees of freedom, the wave function is given by

For simplicity of notation, we will drop the explicit depen-
dence of the basis states on spin-isospin, and the SUð2Þ
Clebsch-Gordan coefficient coupling the orbital angular
momentum with the quark spin Lþ S ¼ J. They will be
implicitly understood in all expressions written below. In
Appendix B we give an explicit example of this construc-
tion for a baryon with Nc ¼ 3, and compare it with the
baryon states constructed in Ref. [7].
The matrix of coefficients Mij are the Clebsch-Gordan

coefficients for the MS�MS! S inner product of two
irreps of SN . They can be determined by requiring that the
state Eq. (10) is left invariant under the action of trans-
positions acting simultaneously on the spin-flavor and
orbital components. In the MS basis defined by the trans-
formations Eqs. (6) the matrix Mij is
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M̂ ¼

1 � 1
N�1 � 1

N�1 � � � � 1
N�1� 1

N�1 1 � 1
N�1 � � � � 1

N�1� 1
N�1 � 1

N�1 1 � � � � 1
N�1� � � � � � � � � � � � � � �

� 1
N�1 � 1

N�1 � 1
N�1 � � � 1

0
BBBBB@

1
CCCCCA: (11)

Since any permutation can be represented as a product of
transpositions, the state given in Eq. (10) transforms indeed
in the S irrep of the overall SN group.

The form of the baryon state Eq. (10) simplifies greatly
with an alternative choice for the basis of MS spin-flavor
and orbital states. This is the so-called Yamanouchi basis
[15], which is constructed such that i) the basis vectors are
orthogonal and ii) each of them is invariant under permu-
tations of mutually overlapping subsets of the N quarks.
Considering the spin-flavor states, the Yamanouchi basis
 k, k ¼ 2; � � � ; N is given by

 2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þp ð�2 þ�3 þ � � � þ�NÞ

 j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � jþ 2ÞðN � jþ 1Þp ð�ðN � jþ 1Þ�j�1

þ�j þ � � � þ�NÞ;
j ¼ 3; � � � ; N: (12)

These states satisfy the normalization conditions h ij ji ¼
�ij. Also, using Eqs. (6) one can see that

 2;  3;  4; � � � ;  N are invariant under permutations of
the subsets ð2; 3; � � � ; NÞ � ð3; � � � ; NÞ � ð4; � � � ; NÞ �
� � � � ðN � 1; NÞ of the N quarks, respectively.

Expressed in terms of the Yamanouchi basis  k, the
matrix M, giving the MS�MS! S coupling, is propor-
tional to the unit matrix

Mij ¼ N

N � 1
�ij; (13)

such that the baryon state Eq. (10) is given simply (with �k
the Yamanouchi basis of orbital states) by

We pause at this point to compare the state Eq. (10) with
the MS states constructed in Ref. [7], and commonly used
in the literature in the context of the 1=Nc expansion. These
states are constructed as tensor products of an ‘‘excited’’
quark whose identity is fixed as quark 1, with a symmetric
‘‘core’’ of N � 1 quarks. We will refer to these states as
CCGL states. With this convention, the wave function used
in Ref. [7] has the form

jCCGLi ¼ �ðSIÞ’mp ð~r1Þ�N
i¼2’sð~riÞ; (15)

where �ðSIÞ denotes the spin-flavor component, and the
remainder is the orbital wave function in Hartree form. By
construction, the spin-flavor wave function �ðSIÞ trans-
forms in the MS irrep of SUð4Þ, and thus also like MS
under SN . It is symmetric under any exchange of the core
quarks, Pij�ðSIÞ ¼ �ðSIÞ for i, j � 1. These two proper-

ties identify it uniquely in terms of theMS basis functions
defined in Eq. (4) as �ðSIÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN�1Þ
p P

N
k¼2�k. The nor-

malization factor is chosen such that the state is normalized
as h�ðSIÞj�ðSIÞi ¼ 1.
Symmetrizing under the ‘‘excited’’ quark index i ¼

1; 2; � � � ; N, one finds for the properly normalized sym-
metric state

jCCGLi ! 1ffiffiffiffi
N

p �N
i¼1P1ijCCGLi

¼ 1

N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p �N
i¼2�

N
j¼2ðP1i�jÞ�i

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
N

jBi; (16)

where the terms with different i in the first sum are or-
thogonal states. This gives the relation between the CCGL
state and the symmetric state constructed above in Eq. (10).

B. SN ! Sorb
N � Ssf

N decomposition of the interaction
Hamiltonian

In this section we study the SN transformation properties
of the interaction Hamiltonian in the nonrelativistic quark
model. For definiteness we adopt the one-gluon-exchange
potential, which follows from a perturbative expansion in
�sðmQÞ in the heavy quark limit mQ 	 �QCD. We formu-

late our discussion in sufficiently general terms to allow the
treatment of any other Hamiltonian containing only two-
body interactions.
We consider a Hamiltonian containing a spin-flavor

symmetric term H0 (the confining potential and kinetic
terms), plus spin-isospin dependent two-body interaction
terms Vij

H ¼ H0 þ g2s
X
i<j

�ai
2

�aj
2
Vij ! H0 � g2s

Nc þ 1

2Nc

X
i<j

Vij;

(17)

where �a are the generators of SUð3Þ color in the funda-
mental representation, and gs is the strong gluon coupling

to the quarks, scaling like gs 
OðN�1=2
c Þ. The second

equality holds on color-singlet hadronic states, on which
the color interaction evaluates to the color factor ðNc þ
1Þ=ð2NcÞ. We will restrict ourselves only to color neutral
hadronic states in this paper.
In the nonrelativistic limit, the two-body interaction Vij

contains three terms: the spin-spin interaction (Vss), the
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quadrupole interaction Vq, and the spin-orbit terms Vso. We

write these interaction terms in a slightly more general
form as [14], where f0;1;2ðrijÞ are unspecified functions

of the interquark distances

Vss ¼
XN
i<j¼1

f0ðrijÞ ~si � ~sj; (18)

Vq ¼
XN
i<j¼1

f2ðrijÞ½3ðr̂ij � ~siÞðr̂ij � ~sjÞ � ð~si � ~sjÞ�; (19)

Vso ¼
XN
i<j¼1

f1ðrijÞ½ð~rij � ~piÞ � ~si � ð ~rij � ~pjÞ � ~sj

þ 2ð~rij � ~piÞ � ~sj � 2ð~rij � ~pjÞ � ~si�: (20)

We would like to decompose the Hamiltonian H into a
sum of terms transforming according to irreps of the per-
mutation group acting on the spin-flavor degrees of free-
dom SsfN . The operators in Eq. (17) are two-body
interactions, of the generic form

V ¼ X
1�i<j�N

RijOij; (21)

where Rij acts only on the orbital coordinates of the

quarks i, j, and Oij acts only on their spin-flavor degrees

of freedom. For example, the spin-spin interaction Vss has
Rij ¼ f0ðrijÞ and Oij ¼ ~si � ~sj. Of course, V must be

symmetric under any permutation of the N quarks, but
the transformation of the spin-flavor and orbital factors
separately can be more complicated. We distinguish two
possibilities for the transformation of these operators under
a transposition of the quarks i, j, corresponding to the two
irreps of S2:

(i) symmetric two-body operators: PijRs
ijP

�1
ij ¼ Rs

ij

and PijOs
ijP

�1
ij ¼ Os

ij.

(ii) antisymmetric two-body operators: PijRa
ijP

�1
ij ¼

�Ra
ij and PijO

a
ijP

�1
ij ¼ �Oa

ij.

The spin-spin and quadrupole interactions Vss, Vq are

composed of symmetric two-body operators, while the
spin-orbit interaction Vso contains both symmetric and
antisymmetric components.

In general, the k-body operators can be classified into
irreps of the permutation group of k objects Sk. For ex-
ample, there are three classes of three-body operators,
corresponding to the S, MS, A irreps of S3.

We start by considering the symmetric two-body opera-
tors. The set of all spin-flavor operatorsOs

ij (and analogous

for the orbital operators Rs
ij) with 1 � i < j � N form a

1
2NðN � 1Þ dimensional reducible representation of the SN
group, which contains the following irreps:

fOs
ijg ¼ S �MS � E: (22)

We will use as a basis for the operators on the right-hand
side the Young operator basis supplemented by the phase
convention Eq. (6) as explained in Appendix A. The pro-
jection of the operators onto irreps of SN are as follows.
The S projection.

O S ¼ X
i<j

Os
ij (23)

The MS projection.

OMS
k ¼ X

2�j�k�N
ðOs

1j �Os
kjÞ; k ¼ 2; 3; � � � ; N (24)

The E projection. These operators can be labeled by the
three integers i, j, k appearing in the standard Young
tableau ½1i � � ��½jk� corresponding to the respective opera-
tor, and are given by

O E
ijk ¼ Os

1i �Os
1k �Os

ij þOs
jk;

k > i; j ¼ 2; � � � ; N � 1:
(25)

In Appendix Awe give as an illustration the complete basis
of the S, MS, E operators for Nc ¼ 5.
The interaction Vsymm constructed with symmetric two-

body operators is symmetric under SN , and its decompo-
sition under SN � SorbN � SsfN has the form

Vsymm ¼ 2

NðN � 1ÞR
SOS

þ N � 1

NðN � 2Þ
XN
j;k¼2

RMS
j OMS

k Mjk

þ c
symm
E

Xð1=2ÞNðN�3Þ

j;k¼1

RE
jO

E
kNjk: (26)

The matricesMjk and Njk are Clebsch-Gordan coefficients

for the MS�MS! S and E� E! S reductions for the
irreps of the SN group. The matrixMjk is given in Eq. (11)

in explicit form. We do not have explicit results for cE and
the matrix Njk for arbitrary N, although for any given N

they can be found as explained in Appendix A.
We consider next the case of the antisymmetric two-

body operators Oa
ij. They form a 1

2NðN � 1Þ dimensional

reducible representation of SN , which is decomposed into
irreps as

fOa
ijg ¼ MS � A0: (27)

This can be verified by noting that the sum of the dimen-
sions of the irreps on the right-hand side is indeed 1

2NðN �
1Þ. We list in Appendix A the explicit basis of operators for
the A0 irrep with N ¼ 5. The projection of these operators
onto irreps of SN gives the following basis operators.
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The MS projection.

OMS
k ¼ XN

j¼1

ðOa
1j �Oa

kjÞ; k ¼ 2; 3; � � � ; N (28)

The A0 projection.
These operators can be labeled by the two integers j, k

appearing in the first column of the standard Young tab-
leaux ½1 . . .�½j�½k� corresponding to the given operator.
They can be chosen as

O A0
jk ¼ 2Oa

1j þ 2Oa
jk � 2Oa

1k; 2 � j < k � N: (29)

The decomposition of the interaction Vanti ¼P
i<jR

a
ijO

a
ij consisting of products of antisymmetric two-

body interactions, into operators transforming as irreps of
SorbN � SsfN , has a similar form to Eq. (26),

Vanti ¼ N � 1

N2

XN
j;k¼2

RMS
j OMS

k Mjk

þ cantiE

Xð1=2ÞðN�1ÞðN�2Þ

j;k¼1

RA0
j O

A0
k Qjk; (30)

where Mjk is given in Eq. (11), and Qjk is the Clebsch-

Gordan coefficient for the reduction A0 � A0 ! S.

C. Mass operator—One-gluon exchange interaction

The discussion of the interaction Hamiltonian in the
previous section was completely general, and did not as-
sume anything about the hadronic states. In this section we
consider its matrix elements on the jBi states constructed in
Sec. III A, with special regard to their spin-flavor structure.
The permutation symmetry reduces the matrix elements of
the orbital operators Rij to a small number of unknown

reduced matrix elements, which can be expressed as over-
lap integrals. Counting the number of the contributing
irreps gives that there are three undetermined reduced
matrix elements for each symmetric two-body operator,
and two reduced matrix elements for each antisymmetric
two-body operator.

We compute the matrix elements of the two-body inter-
action Hamiltonian on the jBi states constructed in
Eq. (10). The matrix elements of the spin-flavor operators
on the basis functions �i are given by

h�ijOSj�ji ¼ hOSið1þ �ijÞ; (31)

h�ijOMS
k j�ji ¼ hOMSið1� �ik�ijÞ; (32)

h�ijOE
klmj�ji ¼ hOEi 1

2
½ð��ik þ �imÞð1þ �jlÞ

þ ð��jk þ �jmÞð1þ �ilÞ�; (33)

where hOSi, hOMSi, hOEi are reduced matrix elements. The
proportionality of the matrix elements to just one reduced

matrix element follows from the Wigner-Eckart theorem
for the SN group. The form of the Clebsch-Gordan coef-
ficients is specific to the MS basis used in this paper, and
can be derived by repeated application of Eqs. (6) to the
states and operators.
For the orbital operators R, an additional complexity is

introduced by the presence of the magnetic quantum num-
bers of the initial and final state orbital basis functions �mp .

The dependence on m, m0 is given by the Lorentz structure
of the orbital operator. The simplest case corresponds to a
Lorentz scalar, for which the matrix elements are given by

h�m0
i jRSj�mj i ¼ hRSið1þ �ijÞ�mm0 ; (34)

h�m0
i jRMS

k j�mj i ¼ hRMSið1� �ik�ijÞ�mm0 ; (35)

h�m0
i jRE

klnj�mj i ¼ hREi 1
2
½ð��ik þ �inÞð1þ �jlÞ

þ ð��jk þ �jnÞð1þ �ilÞ��mm0 : (36)

Inserting these expressions into Eq. (26) and combining
all factors we find the following result for the matrix
element of a symmetric two-body operator Vsymm, ex-

pressed as a sum over irreps of SorbN � S
sp-fl
N :

hVsymmi 
 hBjVsymmjBi
hBjBi

¼ 2

NðN � 1Þ hR
SihOSi þ 1

N
hRMSihOMSi

þ NðN � 3Þ
4ðN � 1Þ hR

EihOEi: (37)

The contribution of the E operators in the last term is
obtained using an alternative method, sketched in
Appendix C, which does not require the knowledge of
the Clebsch-Gordan coefficients Njk.

The reduced matrix elements depend on the precise form
of the interaction. We consider for definiteness the spin-
spin interaction Vss in some detail. For this case the re-
duced matrix elements of the symmetric operators are
given by

hRSi ¼ 1

2
ðN � 1ÞðN � 2ÞI s þ ðN � 1ÞIdir � Iexc; (38)

hOSi ¼ h�ðSIÞj 1
2
~S2 � 3

8
Nj�ðSIÞi: (39)

For ease of comparison with the literature on the 1=Nc
expansion for excited baryons, we expressed the reduced
matrix element of the spin-flavor operator as a matrix
element on the state j�ðSIÞi where the excited quark is

quark no. 1. This state is given by �ðSIÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN�1Þ

p �PN
k¼2�k. The reduced matrix elements of the orbital

operator are expressed in terms of the three overlap inte-
grals over the one-body wave functions
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I s ¼
Z
d~r1d~r2f0ðr12Þj’sð~r1Þj2j’sð ~r2Þj2;

Idir ¼
Z
d~r1d~r2f0ðr12Þj’sð~r1Þj2j’mp ð ~r2Þj2;

Iexc ¼
Z
d~r1d~r2f0ðr12Þ’�

sð ~r1Þ’m�p ð ~r2Þ’mp ð~r1Þ’sð ~r2Þ:
(40)

The spin-flavor operator transforming in theMS irrep is

OMS
k ¼ ð ~s1 � ~skÞ � ~S, and the corresponding orbital opera-

tor is RMS
k ¼ PN

j¼2;j�k½f0ðr1jÞ � f0ðrkjÞ�. Their reduced

matrix elements are

hRMSi ¼ ðN � 2ÞðIdir � I sÞ � 2Iexc; (41)

hOMSi ¼ 1

N � 2
h�ðSIÞj � ~S2 þ N~s1 � ~Sc þ 3

4
Nj�ðSIÞi;

(42)

where the overlap integrals are the same as defined in

Eqs. (40). We denoted ~Sc the ‘‘core’’ spin, defined as ~Sc ¼
~S� ~s1. The reduced matrix element of the orbital operator
hRMSi is computed by taking representative values of i, j,
k in Eq. (35) and evaluating the integrals. The derivation of
the spin-flavor reduced matrix element hOMSi is given in
Appendix D. We postpone the discussion of the E opera-
tors for a later section, as they require a separate treatment.

The quadrupole interaction is treated in a similar way.
This is written as

Vq ¼ 1

2

X
i<j

f2ðrijÞð3r̂aijr̂bij � �abÞðsai sbj þ sbi s
a
j Þ


 X
i<j

Qab
ij O

ab
ij ; (43)

where Qab
ij acts only on the orbital degrees of freedom,

Oab
ij ¼ sai s

b
j þ sbi s

a
j on spin-flavor, and a, b are spatial

indices. As mentioned, this is a symmetric two-body op-
erator. The projections onto S andMS of each of the factors
are obtained as explained above. The symmetric projec-
tions are

Q ab
S ¼ X

i<j

Qab
ij ¼ 1

2

X
i<j

f2ðrijÞð3r̂aijr̂bij � �abÞ; (44)

O ab
S ¼ X

i<j

Oab
ij ¼ 1

2

�
fSa; Sbg � 1

2
N�ab

�
; (45)

where the braces denote symmetrization with respect to the
spatial indices a, b, fXa; Ybg ¼ XaYb þ XbYa. Their ma-
trix elements between the MS basis for orbital and spin-
flavor states are given by the Wigner-Eckart theorem for
the permutation group

h�m0
i jQab

S j�mj i ¼ Sij

�
1

2
fLa;Lbg � 1

3
LðLþ 1Þ�ab

�
m0m

hQSi;
(46)

h�ijOab
S j�ji ¼ SijhOab

S i: (47)

The dependence on the magnetic quantum numbers m, m0
in the orbital matrix element is given by the most general
symmetric and traceless tensor which can be formed from
the angular momentum. We will denote it as Lab2 ¼ 1

2 �
fLa; Lbg � 1

3LðLþ 1Þ�ab.
The reduced matrix elements are given by

hQSi ¼ ðN � 1ÞKdir �Kexc; (48)

hOab
S i ¼ 1

2
h�ðSIÞjfSa; Sbg � 1

2
N�abj�ðSIÞi: (49)

The convolution integralsKdir;exc appearing in the reduced

matrix element of the orbital operator QS are similar to
those introduced for the spin-spin interaction.

KdirðLab2 Þm0m 
 1

2

Z
d~r1d~r2f2ðr12Þð3r̂a12r̂b12 � �abÞ

� j’sð~r1Þj2’m0�
p ð~r2Þ’mp ð ~r2Þ; (50)

KexcðLab2 Þm0m 
 1

2

Z
d~r1d~r2f2ðr12Þð3r̂a12r̂b12 � �abÞ

� ’�
sð ~r1Þ’m0�

p ð ~r2Þ’mp ð~r1Þ’sð ~r2Þ: (51)

The MS projections of the operators are

½Qab�MSk ¼ 1

2

XN
j¼2�k

f2ðr1jÞð3r̂a1jr̂b1j � �abÞ

� 1

2

XN
j¼2�k

f2ðrkjÞð3r̂akjr̂bkj � �abÞ; (52)

½Oab�MSk ¼ fsa1 � sak; S
bg: (53)

Their reduced matrix elements are given by

hQMSi ¼ ðN � 2ÞKdir � 2Kexc; (54)

hOab
MSi ¼

1

N � 2
h�ðSIÞjNfSac; sb1g � fSa; Sbg

þ 1

2
N�abj�ðSIÞi: (55)

Finally we discuss the computation of the matrix ele-
ment of the spin-orbit interaction Vso, which is more in-
volved. As mentioned, this operator can be written as a sum
of symmetric and antisymmetric two-body operators
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Vso ¼ V
symm
so þ Vanti

so

¼ 3

2

X
i<j

~Ls
ij � ð ~si þ ~sjÞ � 1

2

X
i<j

~La
ij � ð ~si � ~sjÞ; (56)

where we defined the symmetric and antisymmetric orbital
operators

~L s
ij ¼ f1ðrijÞ ~rij � ð ~pi � ~pjÞ;

~La
ij ¼ f1ðrijÞ ~rij � ð ~pi þ ~pjÞ:

(57)

They are decomposed as S �MS � E and MS � A0, re-
spectively, and thus their matrix elements taken between
MS states of SN acting on spin-flavor depend on five
reduced matrix elements. At Nc ¼ 3 the E operators do
not exist, and thus this number reduces to four, which
agrees with the counting of Ref. [14]. Table I summarizes
the counting of the independent reduced matrix elements
arising from each of the terms in the quark interaction
Hamiltonian.

Consider first the symmetric piece of the spin-orbit
interaction V

symm
so . The projections of the orbital and

spin-flavor factors onto S and MS irreps of the SN group
are: the symmetric S components

½ ~Ls�S ¼
X
i<j

~Ls
ij; ½~si þ ~sj�S ¼ ðN � 1Þ ~S (58)

and the MS components

½ ~Ls�MSk ¼ XN
j¼2�k

~Ls
1j �

XN
j¼2�k

~Ls
kj;

½ ~si þ ~sj�MSk ¼ ðN � 2Þð~s1 � ~skÞ:
(59)

The matrix element of the V
symm
so operator is given by the

same relation as Eq. (37) except that the reduced matrix
elements are vectors. Taking into account that the only

available vector is the angular momentum ~L, the most
general form for the matrix elements of the orbital opera-

tors ~Ls
ij are given as

h�m0
i j½ ~Ls�Sj�mj i ¼ Sijð ~LÞm0mhLs

Si; (60)

h�m0
i j½ ~Ls�MSk j�mj i ¼ ð1� �ik�jkÞð ~LÞm0mhLs

MSi: (61)

Collecting together all factors, the matrix element of the
Vsymm
so interaction is given by (we neglect here the contri-

bution of the E � E operators to the matrix element, which
does not contribute for Nc ¼ 3)

hBjVsymm
so jBi

hBjBi ¼ 2

N
~L � ~ShLs

Si

þ 1

N
ðN~s1 � ~L� ~S � ~LÞhLs

MSi: (62)

As usual, the expression on the right-hand side is under-
stood as an operator acting on the CCGL-type spin-flavor
states �ðSIÞ, for which the excited quark is quark no. 1.
The scalar coefficients appearing as reduced matrix

elements of the S and MS orbital operators are given by
overlap integrals over the two-body interaction

hLs
Si ¼ ðN � 1ÞJ s

dir � J s
exc;

hLs
MSi ¼ ðN � 2ÞJ s

dir � 2J s
exc;

(63)

where the coefficients J s
dir;exc are defined by the integrals

ð ~LÞm0mJ s
dir ¼

Z
d~r1d~r2f1ðr12Þ~r12 � ð ~p1 � ~p2Þ

� j’sð~r1Þj2’m0�
p ð ~r2Þ’mp ð ~r2Þ; (64)

ð ~LÞm0mJ s
exc ¼

Z
d~r1d~r2f1ðr12Þ~r12 � ð ~p1 � ~p2Þ’�

sð~r1Þ
� ’m

0�
p ð ~r2Þ’mp ð~r1Þ’sð ~r2Þ: (65)

Their scaling is J i 
OðN0
cÞ since they depend only on the

wave functions of the pair of interacting quarks, but not on
the total number of quarks.
The reduced matrix elements hLs

Si, hLs
MSi scale like

OðNcÞ. Using this in Eq. (62), one can see that the con-
tribution of the first term to the mass operator scales like
Oð�sN0

cÞ 
OðN�1
c Þ, while the second term gives a con-

tribution of leading order Oð�sNcÞ 
OðN0
cÞ proportional

to ~s1 � ~L, together with another power-suppressed
contribution.
Finally, we present also the contribution of the antisym-

metric piece of the spin-orbit interaction to the mass op-
erator. According to Eq. (30), this is decomposed into
MS �MSþ A0 � A0 under SorbN � SsfN .
We start by computing the MS �MS term, which con-

tributes

hVanti
so i 
 hBjVanti

so jBi
hBjBi ¼ N � 2

N2
h ~La

MSih ~Oa
MSi: (66)

The spin-flavor reduced matrix element can be obtained as
explained in Appendix D, with the result

TABLE I. Summary of the spin-flavor contributions to the
mass operator of the L ¼ 1 baryons arising from each of the
three terms in the interaction Hamiltonian (for both gluon-
exchange and Goldstone-boson exchange interactions). The
table counts the independent structures, corresponding to each
irrep of SN . The dashes represent terms forbidden by SN , and the
0’s show operators absent for other reasons. The E operators
contribute only for Nc > 3.

Symmetric two-body Antisymmetric two-body

S MS E MS A0

Vss 1 1 1 - -

Vq 1 1 1 - -

Vso 1 1 0 1 0
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h ~Oa
MSi ¼ N

N � 2
h�ðSIÞjN~s1 � ~Sj�ðSIÞi; (67)

and the orbital reduced matrix element is

h ~La
MSi ¼ NJ a

dirð ~LÞm0m: (68)

The overlap integral is given explicitly by

ð ~LÞm0mJ a
dir ¼

Z
d~r1d~r2

~La
12ðr12Þj’sð ~r1Þj2’m0�

p ð ~r2Þ’mp ð~r2Þ:
(69)

This gives the total result for theMS�MS projection of
the antisymmetric piece of the spin-orbit interaction

hVanti
so i ¼ J a

dirðN~s1 � ~L� ~S � ~LÞ: (70)

Finally, we consider also the A0 projection of the anti-
symmetric spin-orbit interaction. According to Eq. (29),
the A0 projection of the spin-flavor operator Oa

ij ¼ ~si � ~sj
vanishes

O A0
jk ¼ 2ð ~s1 � ~sjÞ þ 2ð~sj � ~skÞ � 2ð~s1 � ~skÞ ¼ 0; (71)

such that the A0 operators do not contribute. In addition, for
N ¼ 3 the orbital A0 contribution vanishes because of
T-reversal invariance. We give the detailed argument in
the following, since it is independent on the spin-flavor
structure of the operator.

The A0 projection of ~La
ij is given by Eq. (29) and can be

taken as ½ ~L�A0 ¼ La
12 þLa

23 �La
13. On the two-

dimensional space of the MS orbital states �mi , its matrix
elements have the form

h�m0
i j½ ~La

ij�A0 j�mj i ¼ 0 �3J a
exc

3J a
exc 0

� �
ij
ð ~LÞm0m; (72)

where the exchange integral is defined as

ð ~LÞm0mJ a
exc ¼

Z
d~r1d~r2

~La
12ðr12Þ’�

sð ~r1Þ’m0�
p ð~r2Þ’mp ð~r1Þ’sð ~r2Þ:

(73)

Hermiticity of the ~La
12 operator implies that the overlap

integral is purely imaginary, ReJ a
exc ¼ 0. However,

T-reversal invariance of the Hamiltonian forbids imaginary
terms in the mass operator, such that the overlap integral
must vanish. For N > 3, a second overlap integral can
contribute, which can be nonvanishing.

In summary, the mass operator of the orbitally excited
baryons in the nonrelativistic quark model with the gluon-
exchange potential Eq. (17) is given by

M ¼ c01� g2s
Nc þ 1

2Nc
ða ~S2 þ b~s1 � ~Sc þ cLab2 S

aSb

þ dLab2 S
a
cs
b
1 þ e ~L � ~Sþ f ~L � ~s1Þ þ � � � : (74)

The spin-flavor operators are understood to act on the
CCGL-type state �ðSIÞ, for which the excited quark is

quark no. 1. The ellipses denote operators transforming in
the E irrep, which appear only for N > 3, and are consid-
ered in the next section.
The coefficients a� f are given by linear combinations

of the orbital overlap integrals introduced above

a ¼ 1

NðN � 1Þ
�ðN � 1ÞðN � 2Þ

2
I s þ ðN � 1ÞIdir � Iexc

�

� 1

NðN � 2Þ ½ðN � 2ÞðIdir � I sÞ � 2Iexc�; (75)

b ¼ 1

N � 2
½ðN � 2ÞðIdir � I sÞ � 2Iexc�; (76)

c ¼ 2

NðN � 1Þ ½ðN � 1ÞKdir �Kexc�

� 2

NðN � 2Þ ½ðN � 2ÞKdir � 2Kexc�; (77)

d ¼ 2

N � 2
½ðN � 2ÞKdir � 2Kexc�; (78)

e ¼ 3

N
½ðN � 1ÞJ s

dir � J s
exc� � 3

2N
½ðN � 2ÞJ s

dir � 2J s
exc�

þ 1

2
J a

dir; (79)

f ¼ 3

2
½ðN � 2ÞJ s

dir � 2J s
exc� � N

2
J a

dir: (80)

The matrix elements of the operators on quark model states
can be found in the Appendix of Ref. [7] for any values of
L and Nc.
The expression Eq. (74) holds regardless of the orbital

wave functions, and summarizes in a compact operator
form the most general result for the masses of the orbitally
excited states with MS spin-flavor symmetry, in the pres-
ence of one-gluon exchange quark-quark interactions.
Although we used in deriving these results the Hartree
approximation, they have a more general validity. The
Hartree approximation is an useful device for computing
the leading Nc dependence of the orbital-reduced matrix
elements, but is not essential for the arguments leading to
the spin-flavor structure of the mass operator. Expressing
the latter directly in terms of the orbital-reduced matrix
elements will produce an expression similar to Eq. (74), for
which the N dependence is implicit in the reduced matrix
elements of the orbital operators.

D. Goldstone-boson exchange interaction

We consider in this section the mass operator of the
orbitally excited baryons in a second model for the
quark-quark interaction. In Ref. [16] it was suggested
that pion-exchange mediated quark-quark interactions
can reproduce better the observed mass spectrum of these
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states. The physical idea is that at the energy scales of
quarks inside a hadron, the appropriate degrees of freedom
are quarks, gluons and the Goldstone bosons of the broken
chiral group SUð2ÞL � SUð2ÞR ! SUð2Þ [17]. The ex-
change of Goldstone bosons changes the short distance
form of the quark-quark interactions, and introduces a
different spin-flavor structure.

The interaction Hamiltonian of this model has the form

H ¼ H0 þ g2A
f2�

X
i<j

~Vij (81)

and has the same spin structure as the one-gluon interac-
tion, but with additional explicit isospin dependence. gA is
a quark-pion coupling which scales like OðN0

cÞ with the
number of colors Nc, and f2� 
OðNcÞ. The two-body
interactions ~Vij include the following contributions: spin-

spin interaction ~Vss, a tensor interaction ~Vq, and the spin-

orbit interaction ~Vso. We write these interaction terms as
[14],

~V ss ¼
XN
i<j¼1

g0ðrijÞ ~si � ~sjtai taj ; (82)

~V q ¼
XN
i<j¼1

g2ðrijÞ½3ðr̂ij � ~siÞðr̂ij � ~sjÞ � ð ~si � ~sjÞ�tai taj ;

(83)

~V so ¼
XN
i<j¼1

g1ðrijÞ½ð ~rij � ~piÞ � ~si � ð ~rij � ~pjÞ � ~sj

þ 2ð~rij � ~piÞ � ~sj � 2ð ~rij � ~pjÞ � ~si�tai taj ; (84)

where the isospin generators are ta ¼ 1
2 �

a, and giðrijÞ are
unspecified functions.

The mass operator of the orbitally excited baryons with
this interaction potential can be computed using the ap-
proach presented for the one-gluon exchange interaction.
The orbital matrix elements have the same form (although
with different overlap integrals), while the spin-flavor op-
erators are different.

We give in some detail the projection of the spin-spin
interaction ~Vij ¼ g0ðrijÞ ~si � ~sjtai taj onto operators trans-

forming as irreps of SsfN . The symmetric projection of the
spin-flavor operator Oij ¼ ~si � ~sjtai taj is

O S ¼
X
i<j

Oij ¼ 1

2

�
GkaGka � 9

16
N

�
; (85)

where we denoted Gka ¼ PN
i¼1 s

k
i t
a
i . The G

2 operator can

be expressed in terms of the SUð4Þ Casimir using the
identity (for F ¼ 2 light quark flavors)

GkaGka ¼ 1

16
Nð3N þ 4Þ � 1

4
~S2 � 1

4
TaTa: (86)

The reduced matrix element of theMS projection can be
found as explained in Appendix D, and is given by

hOMSi ¼ 1

N � 2

�
Ngka1 G

ka
c �GkaGka þ 9

16
N

�
: (87)

The g1Gc terms can be reduced to simpler operators using
the reduction rule Eq. (4.5) in Ref. [7], which for F ¼ 2
gives

gka1 G
ka
c ¼ � 1

16
ðN þ 3Þ � 1

4
~s1 � ~Sc � 1

4
ta1T

a
c : (88)

Finally, the operators have to be expressed as sums of terms
acting on the core and excited quark.
Collecting the contributions of all terms in the

Hamiltonian we find the following general result for the
mass operator in the Goldstone-boson exchange model:

M ¼ c01þ g2A
f2�

ða ~S2c þ b~s1 � ~Sc þ cta1T
a
c þ dLij2 g

ia
1 G

ja
c

þ eLij2 fSic; Sjcg þ fLiSic þ gLita1G
ia
c þ hLigia1 T

a
c Þ:
(89)

The coefficients a� h are given by linear combinations
of the orbital overlap integrals

a¼� 1

2NðN�1Þ
�
1

2
ðN�1ÞðN�2ÞI sþðN�1ÞIdir�Iexc

�

þ 1

2NðN�2Þ½ðN�2ÞðIdir�I sÞ�2Iexc�; (90)

b ¼ c

¼ � 1

2NðN � 1Þ
�
1

2
ðN � 1ÞðN � 2ÞI s

þ ðN � 1ÞIdir � Iexc

�

� 1

4N
½ðN � 2ÞðIdir � I sÞ � 2Iexc�; (91)

d ¼ 4

NðN � 1Þ ½ðN � 1ÞKdir �Kexc�

þ 2

N
½ðN � 2ÞKdir � 2Kexc�; (92)

e ¼ 1

4NðN � 1Þ ½ðN � 1ÞKdir �Kexc�

� 1

4NðN � 2Þ ½ðN � 2ÞKdir � 2Kexc�; (93)

f ¼ 3ðN � 2Þ
4NðN � 1Þ ½ðN � 1ÞJ s

dir � J s
exc�

� 3

4N
½ðN � 2ÞJ s

dir � 2J s
exc�; (94)
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g ¼ 3

NðN � 1Þ ½ðN � 1ÞJ s
dir � J s

exc�

þ 3

2N
½ðN � 2ÞJ s

dir � 2J s
exc� þ 1

2
J a

dir; (95)

h ¼ 3

NðN � 1Þ ½ðN � 1ÞJ s
dir � J s

exc�

þ 3

2N
½ðN � 2ÞJ s

dir � 2J s
exc� � 1

2
J a

dir: (96)

Comparing with the mass operator formula for the one-
gluon exchange interaction Eq. (74), we find that more
effective operators are present for this case (eight vs six).
Note that two of the coefficients are equal (b ¼ c). The
total number of unknown constants is the same in both
cases and is given by the seven reduced matrix elements of
the orbital operators. An additional simplification occurs
for the one-gluon interaction case, where the MS projec-
tions of the symmetric and antisymmetric spin-orbit inter-
action give the same operator (compare the second term in
Eq. (62) and (70)). This reduces the number of independent
spin-flavor structures for this case from seven to six.

E. The E operators

In addition to the operators considered so far, transform-
ing in the S, MS, and A0 irreps, there are additional opera-
tors transforming in the E irrep of SN which appear only for
Nc > 3. They are introduced only by the spin-spin Vss and
tensor Vq interactions in the Hamiltonian. In this section

we study their spin-flavor structure.
We start by considering the spin-spin interaction Oij ¼

~si � ~sj. The E projection of this operator is given by

O E
abc ¼ ð ~s1 � ~sbÞ � ð~sa � ~scÞ; (97)

where a, b, c are the integers appearing in the standard
Young tableaux in the order ½1c � � ��½ab�. It turns out that it
is impossible to express the reduced matrix element of E
operators as matrix elements on the CCGL-type state
�ðSIÞ. The reason is that the diagonal matrix elements of
the OE

abc operators on the state �ðSIÞ vanish. This can be

seen by symmetrizing the operator OE
abc under permuta-

tions of the N � 1 quarks different from quark 1, which
gives a vanishing result.1

On the other hand, the off-diagonal matrix elements of
OE
abc between CCGL-type states with different excited

quarks, e.g., quarks 1 and 2, are nonvanishing. We will
denote them as �1ðSIÞ 
 �ðSIÞ and �2ðSIÞ; they are ex-
pressed in terms of the basis states �i as

j�1ðSIÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þp ð�2 þ�3 þ � � � þ�NÞ;

j�2ðSIÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þp ð�ðN � 1Þ�2 þ�3 þ � � �

þ�NÞ:

(98)

Consider for definiteness the matrix element of OE
234 ¼

ð~s1 � ~s3Þ � ð ~s2 � ~s4Þ, which can be written using the
Wigner-Eckart theorem as

h�1ðSIÞjOE
234j�2ðSIÞi ¼ N

2ðN � 1Þ hOEi (99)

where the Clebsch coefficient has been computed using
Eq. (33). This shows that the reduced matrix element of the
E operators hOEi can be expressed as the off-diagonal
matrix elements between CCGL-type states with different
excited quarks.
The operator on the left-hand side of Eq. (99) can be put

in a simpler form by noting that both states �1;2ðSIÞ are
symmetric under any permutation of the ‘‘core’’ quarks
ð3; 4; � � � ; NÞ. This core contains all N � 2 quarks which
are different from quarks 1,2. Therefore the only nonvan-
ishing contribution to the matrix element in (99) will come
from the component of OE

234 which is symmetric under the

core quarks. This component is given as a sum over all
permutations �c of the core quarks ð3; 4; � � � ; NÞ

O E
234 !

1

ðN � 2Þ! ��c
�cOE

234: (100)

The sum over permutations can be computed explicitly
for the spin-spin interaction with the result, for arbitraryN,

1

ðN � 2Þ! ��c
�cOE

234 ¼ ð~s1 � ~s2Þ � 1

N � 2
ð ~s1 þ ~s2Þ � ~Scc

þ 2

ðN � 2ÞðN � 3Þ
XN
i<j¼3

~si � ~sj
(101)

where we denoted Scc ¼ s3 þ s4 þ � � � þ sN the (N � 2)-
quarks core spin. The sum in the last term runs over all
quark pairs in the core.
Combining this with Eq. (99) one finds the reduced

matrix element of the E operator as an off-diagonal matrix
element on CCGL states with different excited quarks

N

2ðN � 1Þ hOEi ¼ h�1ðSIÞjOE
234j�2ðSIÞi

¼ h�1ðSIÞjð~s1 � ~s2Þ � 1

N � 2
ð~s1 þ ~s2Þ � ~Scc

þ 1

ðN � 2ÞðN � 3Þ
�
~S2cc � 3

4
ðN � 2Þ

�

� j�2ðSIÞi: (102)

1In group theoretic language, this is due to the fact that any E
operator transforms asMSN�1 þ EN�1 under the SN�1 subgroup
of SN which leaves quark 1 unchanged. Since �1ðSIÞ is a singlet
under this subgroup, the matrix elements of EN on this state must
vanish.
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This specifies the reduced matrix of the operator hOEi as an
off-diagonal matrix element on CCGL-type states.

The contribution of the E component of the tensor
interaction is computed in an analogous way. Combining
everything we find the total contribution of the E operators
to the mass operator Eq. (74) in the one-gluon exchange

model as �g2s Ncþ1
2Nc

�ME with

�ME ¼ g

�
ð ~s1 � ~s2Þ � 1

N � 2
ð~s1 þ ~s2Þ � ~Scc

þ 1

ðN � 2ÞðN � 3Þ
�
S2cc � 3

4
ðN � 2Þ

��

þ hLab2

�
sa1s

b
2 �

1

N � 2
ðsa1 þ sa2ÞSbcc

þ 1

2ðN � 2ÞðN � 3Þ fS
a
cc; S

b
ccg

�
(103)

with

g ¼ ðN � 3ÞIexc; h ¼ ðN � 3ÞKexc: (104)

The matrix element of the operators in (103) is understood
to be taken between the off-diagonal CCGL-type spin-
flavor states h�1ðSIÞj and j�2ðSIÞi states defined as in
Eq. (98).

For the purposes ofN power counting, it is convenient to
express the operators in Eq. (103) as diagonal matrix
elements on the �1ðSIÞ state. This can be done using the
relation

j�2ðSIÞi ¼ P12j�1ðSIÞi (105)

together with the explicit representation of the transposi-
tion operator P12 on a system of spin-isospin 1=2 quarks

P12 ¼ 1

4
ð1þ 4~s1 � ~s2Þð1þ 4ta1t

a
2Þ: (106)

We illustrate the method of calculation by giving the
details of the off-diagonal matrix element of the first term
in Eq. (103). This can be written as

h�1ðSIÞj ~s1 � ~s2j�2ðSIÞi ¼ h�1ðSIÞj~s1 � ~s2P12j�1ðSIÞi

¼ 1

N � 1
h�1ðSIÞj

XN
k¼2

~s1 � ~skP1kj

��1ðSIÞi: (107)

In the last step we used the symmetry of the wave function

�1ðSIÞ under the Ssp-flN�1 subgroup of S
sp-fl
N acting only on the

quarks 2; 3; � � � ; N, and projected the operator ~s1 � ~s2P12

onto its symmetric component under this subgroup. The
sum over k can be performed in closed form with the result

h�1ðSIÞj ~s1 � ~s2j�2ðSIÞi ¼ 1

4ðN � 1Þ h�1ðSIÞj � ~s1 � ~Sc

þ 3

4
ðN � 1Þ � 4gia1 G

ia
c

þ 3ta1T
a
c j�1ðSIÞi

¼ h�1ðSIÞj 1

N � 1
ta1T

a
c

þ N

4ðN � 1Þ j�1ðSIÞi; (108)

where we used the reduction rule Eq. (88) in the last step to

eliminate ~s1 � ~Sc, gia1 Gia
c in favor of ta1T

a
c .

The remaining terms in Eq. (103) can be computed in a
similar way. After a lengthy calculation one finds for the
off-diagonal matrix element of the first term, arising from
the spin-spin interaction,

h�1ðSIÞjð~s1 � ~s2Þ � 1

N � 2
ð~s1 þ ~s2Þ � ~Scc þ 1

ðN � 2ÞðN � 3Þ
�
~S2cc � 3

4
ðN � 2Þ

�
j�2ðSIÞi

¼ h�1ðSIÞj 3N � 13

4ðN � 2ÞðN � 3Þ t1Tc �
N2 þ 4N þ 11

4ðN � 1ÞðN � 2ÞðN � 3Þ s1Sc �
2

ðN � 2ÞðN � 3Þg1Gc

� N þ 3

4ðN � 1ÞðN � 2ÞðN � 3Þ S
2
c � 1

ðN � 2ÞðN � 3Þ g1ScTc þ
N

4ðN � 2Þ j�1ðSIÞi: (109)

In writing the final result we assumed two light flavors F ¼ 2, which allows the use of the identity SicG
ia
c ¼ 1

4 ðN þ 1ÞTac .
The matrix element of the second term in Eq. (103), representing the contribution of the E projection of the quadrupole

interaction Vq, can be expressed as a diagonal matrix element on �1ðSIÞ in a similar way, with the result

Lij2 h�1ðSIÞjfsi1; sj2g �
1

N � 2
fðsi1 þ si2Þ; Sjccg þ

1

ðN � 2ÞðN � 3Þ fS
i
cc; S

j
ccgj�2ðSIÞi

¼ Lij2 h�1ðSIÞj 2N � 5

ðN � 2ÞðN � 3Þ fg
ia
1 ; G

ja
c g þ N þ 1

4ðN � 1ÞðN � 2Þ fs
i
1; S

j
cg � N þ 3

4ðN � 1ÞðN � 2ÞðN � 3Þ fS
i
c; S

j
cg

� 1

ðN � 2ÞðN � 3Þ t
a
1fSic; Gja

c g � 1

ðN � 2ÞðN � 3Þ fg
ia
1 ; S

j
cgTac j�1ðSIÞi: (110)
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A few comments are in order about the form of these
results. Note that the E operators arising from the spin-spin
and tensor interactions introduce a nontrivial flavor depen-
dence (manifested through the operators t1Tc, g1Gc) which
is not observed in the S, MS projections of these interac-
tions. Furthermore, in addition to the operators encoun-
tered so far, three new structures are introduced by the E

operators, given by gia1 S
i
cT

a
c and Lij2 t

a
1fSic; Gja

c g,
Lij2 fgia1 ; SjcgTac . The operator Lij2 fgia1 ; Gja

c g contributes at
OðN0

cÞ, and the remaining ones start at order OðN�1
c Þ.

IV. MATCHING ONTO THE 1=Nc EXPANSION

The spin-flavor structure of the matrix elements of the
one-gluon interaction Eq. (74) matches a subset of the
operators appearing in the 1=Nc expansion of the mass
operator of the orbitally excited states. We adopt here the
basis of operators of Ref. [7]. Working to order 1=Nc, the
most general set of operators for the mass of these states is

M̂ ¼ c1Nc1þ c2L
isi þ c3

3

Nc
Lij2 g

iaGja
c þX8

i¼4

ciOi:

(111)

The terms proportional to c2;3 contribute at order OðN0
cÞ,

and the remaining operators proportional to c4–8 are of
order 1=Nc. A complete basis of subleading operators can
be chosen as [7]

O4 ¼ Lisi þ 4

Nc þ 1
LitaGia

c ; O5 ¼ 1

Nc
LiSic;

O6 ¼ 1

Nc
S2c; O7 ¼ 1

Nc
siSic; O8 ¼ 1

Nc
Lij2 fsi; Sjcg;

O9 ¼ 1

Nc
LigiaTac ; O10 ¼ 1

Nc
taTac ;

O11 ¼ 1

N2
c

Lij2 t
afSic; Gja

c g: (112)

Matching the one-gluon exchange quark-quark interac-
tion we find a leading-orderOðN0

cÞ contribution to the mass
coming from the spin-orbit interaction

c2 ¼ � g2sNc
4

ð3J s
dir � J a

dirÞ; c3 ¼ 0: (113)

This confirms in a direct way the prediction obtained from
the 1=Nc expansion of the breaking of the SUð4Þ spin-
flavor symmetry at leading order in Nc [5,7]. The non-
relativistic quark model with gluon-mediated quark inter-
actions displays the same breaking phenomenon.

The coefficients of the OðN�1
c Þ operators are given by

c4¼0; c5¼�g
2
sNc
4

ð3J s
dirþJ a

dirÞ; c6¼�g
2
sNc
4

I s;

c7¼�g
2
sNc
2

Idir; c8¼�g
2
sNc
2

Kdir (114)

and c9;10;11 ¼ 0. In addition, the E operators contribute to

the coefficients c6;7;10, as shown in Eq. (109), and to c3;8;11
as seen in Eq. (110). They also introduce two operators not

present for N ¼ 3, gia1 S
i
cT

a
c , and L

ij
2 fgia1 ; SjcgTac , contribut-

ing at order OðN�2
c Þ, in agreement with Ref. [7].

Several general comments can be made about these
results.
The explicit calculation confirms the Nc power counting

rules given in Ref. [5], giving the leading contribution of
each operator. The two-body quark interactions considered
here produce one-, two-, and three-body (O17 ¼
1
N2
c
Lij2 fSic; Sjcg of Ref. [7], which correctly appears at order

Oð1=N2
cÞ in Eqs. (74) and (110)) effective operators in the

1=Nc expansion. Higher-order iterations of the interaction
Hamiltonian will also generate more higher-order
operators.
An important conclusion following from this calculation

is that operators with nontrivial permutation symmetry are
indeed required by a correct implementation of the 1=Nc
expansion. This disagrees with the 1=Nc expansion re-
cently proposed by Matagne and Stancu [12], which does
not allow for such operators.
A distinctive prediction of the one-gluon exchange po-

tential is the vanishing of the coefficient c3 of one of the
leading-order operators (up to contributions from the E
operators, which appear only for N > 3). Expressed in
terms of the tower masses M0, M1, M2, (see Ref. [9]) this
relation is equivalent to a mass relation at leading order in
1=Nc

M0 � 3

2
M1 þ 1

2
M2 ¼ OðN�1

c Þ: (115)

We consider next the matching of the mass operator
Eq. (89) in the model with quark-quark interactions medi-
ated by Goldstone-boson exchange. For this case the co-
efficients of the leading operators are

c2 ¼ � 1

8
~g2Að3J s

dir þ J a
dirÞ; c3 ¼ 2

3
~g2AKdir (116)

where we defined ~g2A ¼ Ncg
2
A=f

2
� a coefficient of order


OðN0
cÞ.

The coefficients of the subleading OðN�1
c Þ operators are

c4 ¼ 1

8
~g2Að3J s

dir þ J a
dirÞ; c5 ¼ 0;

c6 ¼ � 1

4
~g2AI s; c7 ¼ c10 ¼ � 1

4
~g2AIdir;

c8 ¼ c11 ¼ 0; c9 ¼ 1

2
~g2Að3J s

dir � J a
dirÞ:

(117)

For this case the coefficients of both leading operators
can be of natural size. There are predictions for the vanish-
ing of the coefficients of some subleading operators, and
also one relation between the coefficients of the leading
and subleading operators c2 ¼ �c4. The Goldstone-boson
interaction also generates a three-body operator, O17 of
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Ref. [7], which correctly appears at order Oð1=N2
cÞ in

Eq. (89).
The coefficients of the leading-order operators c1;2;3

have been determined in [9] from a fit to the masses of
the nonstrange L ¼ 1 baryons, working at leading order in
1=Nc. The results depend on the assignment of the ob-
served baryons into the irreps of the contracted symmetry
(towers). There are four possible assignments, but only two
of them are favored by data. These two assignments give
the coefficients

assignment 1: cð0Þ2 ¼ 83� 14 MeV;

cð0Þ3 ¼ �188� 28 MeV (118)

assignment 3: cð0Þ2 ¼ �12� 16 MeV;

cð0Þ3 ¼ 142� 38 MeV: (119)

Comparing with the predictions Eq. (113) of the one-gluon
quark-quark potential model, we see that there is no evi-
dence in the data for a suppression of the coefficient c3
relative to c2. For both assignments, the coefficient c3 is
sizeable, a situation which favors the Goldstone-boson
exchange model, or at least indicates that some kind of
flavor-dependent effective interactions cannot be ne-
glected. A more detailed analysis, including also the pre-
dictions for the subleading coefficients, will be presented
elsewhere.

V. CONCLUSIONS

In this paper we analyzed the spin-flavor structure of
excited baryons containingNc quarks, from the perspective
of the permutation group SN of N ¼ Nc objects. The group
SN is the diagonal subgroup of the product SorbN � SsfN of
permutations acting separately on the orbital and spin-
flavor wave functions, respectively.

The permutation group imposes restrictive constraints
on the form of the allowed spin-flavor operators contribut-
ing to any physical quantity, such as masses and couplings.
In this paper we discussed in detail the mass operator of the
orbitally excited baryons with MS spin-flavor symmetry.

In the quark model with a quark-quark interaction
Hamiltonian V, the hadronic mass operator contains only

those spin-flavor operators which appear in the decompo-
sition of the Hamiltonian under SN ! SorbN � SsfN . This
decomposition has the generic form V ¼ P

RV
orb
R Vsf

R ,
with R irreps of the SN group, which depend on V.
Taking the matrix elements of the orbital operators Vorb

R

on hadronic states replaces them with reduced matrix
elements, parametrizing in a general way our ignorance
about the orbital wave functions. The remaining depen-
dence on the spin-flavor degrees of freedom is displayed
explicitly in operator form, regardless of the unknown
orbital wave functions.
This approach is similar to the method used for Nc ¼ 3

in Ref. [14] to obtain the predictions of the nonrelativistic
quark model in a form independent of the orbital wave
functions. In addition to extending this result to arbitrary
Nc, we focus here on the transformation of the operators
under the permutation group SsfN acting on the spin-flavor

degrees of freedom, which is crucial for the connection of
these results with the 1=Nc expansion.
We constructed explicitly the SN ! SorbN � SsfN decom-

position of the most general two-body operator V, consid-
ering, in particular, the case of the hyperfine gluon-
exchange and Goldstone-boson exchange mediated
quark-quark interactions. The main results of this analysis
are Eqs. (74) and (89), which summarize in a compact
operator form the most general structure of the mass op-
erator for the excited baryons allowed by the considered
q� q interactions.
The results for the mass operator match precisely the

effective operators appearing in the 1=Nc expansion for
these states [5,7], We find that the decomposition into core
and excited quark operators used previously in the litera-
ture on the subject is both necessary, and a consequence of
the SN symmetry. We confirm by explicit calculation the
Nc counting rules of Refs. [5,7]. In particular we confirm
that the effective spin-orbit interaction is of leading order
OðN0

cÞ, as was correctly stated in Ref. [5].
Comparing with existing fits to the masses of nonstrange

L ¼ 1 excited baryons, we find that flavor-dependent in-
teractions cannot be neglected, and may be necessary to
supplement the gluon-exchange model. This is in line with
the chiral quark picture proposed in Ref. [17]. The ap-
proach discussed here allows further tests of the nature of
the q� q forces, as manifested through the hadronic prop-
erties of these states. We hope to report progress on this
issue in the near future.

TABLE II. Irreducible representations of SN contained in MS�MS.

Name Partition Dim Character �ðRÞ
1�;2	;3
;���

S [N] 1 1

MS [N � 1, 1] N � 1 �� 1
E [N � 2, 2] 1

2NðN � 3Þ 1
2 ð�� 1Þð�� 2Þ þ 	� 1

A0 [N � 2, 1, 1] 1
2 ðN � 1ÞðN � 2Þ 1

2 ð�� 1Þð�� 2Þ � 	

DAN PIRJOL AND CARLOS SCHAT PHYSICAL REVIEW D 78, 034026 (2008)

034026-14



ACKNOWLEDGMENTS

C. S. acknowledges financial support from Fundación
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APPENDIX A: THE PERMUTATION GROUP

In this appendix we give a few details about the permu-
tation group of N objects SN , and its irreducible represen-
tations which are used in the main text.

The irreps of SN are identified by a partition

½n1; n2; � � � ; nj� with Pj
i¼1 ni ¼ N. Each partition can be

represented as a Young diagram with n1 boxes on the first
row, n2 on the second row, etc.

The irreps of SN which are relevant for the present work
are given in Table II. We list also the characters for the
conjugacy class 1�2	3
 � � � containing � 1-cycles, 	 2-
cycles, etc. Using these expressions and the orthogonality
theorem for characters, the projection of any operator onto
these irreps of SN can be computed explicitly.

The choice of a basis for a given irrep is not unique and
several possible choices are adopted in the literature. The
most elegant choice is the orthogonal Yamanouchi-Katani
basis, which is constructed recursively in terms of the chain
SN�1 � SN � SNþ1 � � � . However, this basis is not conve-
nient for arbitrary N, since the matrices of the irreducible
representations of SN cannot be given in a simple closed
form.

In this paper we use the Young operator basis [15].
Consider a particular standard Young tableaux (SYT) of
the shape corresponding to a given irrep of SN. This is a
Young tableaux with the numbers 1, 2, � � � , N inserted
such that the numbers increase from the left to the right in
each row, and increase as one moves down in each column.
We will denote a SYT by giving the sequence of indices in
each row, e.g., [125][3][4] for a Young diagram with three
rows in the A0 of S5. Denote with P the sum of all hori-
zontal permutations, which exchange only elements in the
same row, and with Q the sum of all vertical permutations,
which interchange only elements in the same column,
multiplied with the parity of each permutation.

The Young operator Y corresponding to a given Young
tableau is defined as

Y ¼ QP: (A1)

This can be applied to any state or operator to project out
the component with the desired transformation under SN .

As an example we give the explicit construction of the
basis of symmetric two-body operators Oij transforming

under irreps of SN , for N ¼ 5. As shown in Sec. III, these
operators are decomposed as fOijg ¼ SþMSþ E under

the permutation group SN .

The symmetric component is given by the sum over all
components

OS ¼ O12 þO13 þO14 þO15 þO23 þO24

þO25 þO34 þO35 þO45: (A2)

The MS operators are constructed by applying the

Young projection operators to a certain operator Oð0Þ
ij .

This is chosen such that the resulting basis of operators
satisfies the relations Eqs. (6). Considering the Young
tableaux ½1ab � � ��½k� corresponding to OMS

k , the starting

operator must be chosen as Oð0Þ
ij ¼ O1a. Thus, for O

MS
2 the

Young projection operator is applied to O13, and for the
remaining OMS

k�3, to O12. As an illustration, we give below

the explicit MS operator basis for N ¼ 5, where we show
also the standard Young diagram corresponding to each
projector:

OMS
2 ¼O13þO14þO15�O23�O24�O25; ½1345�½2�

(A3)

OMS
3 ¼O12þO14þO15�O23�O34�O35; ½1245�½3�

(A4)

OMS
4 ¼O12þO13þO15�O24�O34�O45; ½1235�½4�

(A5)

OMS
5 ¼O12þO13þO14�O25�O35�O45; ½1234�½5�:

(A6)

The E projection contains five operators. They can be
obtained by acting with the Young projectors YðEÞ of the
standard Young diagram ½1a � � ��½bc� onto O1a, and are
given by

O E
1 ¼ O12 �O15 �O24 þO45; ½123�½45� (A7)

O E
2 ¼ O12 �O15 �O32 þO35; ½124�½35� (A8)

O E
3 ¼ O12 �O14 �O23 þO34; ½125�½34� (A9)

O E
4 ¼ O13 �O15 �O23 þO25; ½134�½25� (A10)

O E
5 ¼ O13 �O14 �O23 þO24; ½135�½24�: (A11)

These results can be used to express any interaction of
N ¼ 5 particles interacting through symmetric two-body
potentials which are factorized into spin-isospin and orbital
operators. Expressed in terms of the operators transforming

in the irreps of SN , ~OT
k ¼ ðOS;O

MS
2 ; OMS

3 ; OMS
4 ; OMS

5 ; OE
1 ;

OE
2 ; O

E
3 ; O

E
4 ; O

E
5 Þ, the interaction Hamiltonian takes a block

diagonal form
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X
i<j

OijRij ¼
X
k;l

~Ok

1
10 0 0 0 0 0 0 0 0 0
0 4

15 � 1
15 � 1

15 � 1
15 0 0 0 0 0

0 � 1
15

4
15 � 1

15 � 1
15 0 0 0 0 0

0 � 1
15 � 1

15
4
15 � 1

15 0 0 0 0 0
0 � 1

15 � 1
15 � 1

15
4
15 0 0 0 0 0

0 0 0 0 0 1
2 � 1

6 � 1
6 � 1

6
1
3

0 0 0 0 0 � 1
6

1
2 � 1

6 � 1
6 0

0 0 0 0 0 � 1
6 � 1

6
1
2

1
6 � 1

3

0 0 0 0 0 � 1
6 � 1

6
1
6

1
2 � 1

3

0 0 0 0 0 1
3 0 � 1

3 � 1
3

2
3

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
kl

~Rl: (A12)

This is a particular case for N ¼ 5 of the general relation
Eq. (26) which is valid for any N.

We also present the construction of the operator basis for
the antisymmetric two-body operators. As mentioned,
these operators transform like the MSþ A0 irreps.

The MS operators are given by

OMS
2 ¼ 2O12 �O23 �O24 �O25 þO13 þO14 þO15;

½1345�½2� (A13)

OMS
3 ¼ 2O13 þO23 �O34 �O35 þO12 þO14 þO15;

½1245�½3� (A14)

OMS
4 ¼ 2O14 þO24 þO34 �O45 þO12 þO13 þO15;

½1235�½4� (A15)

OMS
5 ¼ 2O15 þO25 þO35 þO45 þO12 þO13 þO14;

½1234�½5�: (A16)

The A0 operators depend only on the indices in the first
column of the SYT. Considering the SYT ½1ab�½c�½d�, the

Young projector YðA0Þ reduces to the antisymmetrizer in
the indices ½1cd�, A1cd ¼ 1� P1c � P1d � Pcd þ Pcd1 þ
Pc1d, when applied to O1c. The basis of operators is

OA0
1 ¼ 2O12 � 2O13 þ 2O23; ½145�½2�½3� (A17)

OA0
2 ¼ 2O12 � 2O14 þ 2O24; ½135�½2�½4� (A18)

OA0
3 ¼ 2O12 � 2O15 þ 2O25; ½134�½2�½5� (A19)

OA0
4 ¼ 2O13 � 2O14 þ 2O34; ½125�½3�½4� (A20)

OA0
5 ¼ 2O13 � 2O15 þ 2O35; ½124�½3�½5� (A21)

OA0
6 ¼ 2O14 � 2O15 þ 2O45; ½123�½4�½5�: (A22)

The decomposition of a symmetric Hamiltonian con-
taining antisymmetric two-body operators, expressed in

the basis ~OT
k ¼ ðOMS

2 ; OMS
3 ; OMS

4 ; OMS
5 ; OA0

1 ; O
A0
2 ; O

A0
3 ; O

A0
4 ;

OA0
5 ; O

A0
6 Þ, has again a block diagonal form

X
i<j

OijRij ¼
X
k;l

~Ok

4
25 � 1

25 � 1
25 � 1

25 0 0 0 0 0 0
� 1

25
4
25 � 1

25 � 1
25 0 0 0 0 0 0

� 1
25 � 1

25
4
25 � 1

25 0 0 0 0 0 0
� 1

25 � 1
25 � 1

25
4
25 0 0 0 0 0 0

0 0 0 0 3
20 � 1

20 � 1
20

1
20

1
20 0

0 0 0 0 � 1
20

3
20 � 1

20 � 1
20 0 1

20

0 0 0 0 � 1
20 � 1

20
3
20 0 � 1

20 � 1
20

0 0 0 0 1
20 � 1

20 0 3
20 � 1

20
1
20

0 0 0 0 1
20 0 � 1

20 � 1
20

3
20 � 1

20

0 0 0 0 0 1
20 � 1

20
1
20 � 1

20
3
20

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
kl

~Rl: (A23)

This is the particular case for N ¼ 5 of the general relation Eq. (30), valid for any N.

APPENDIX B: AN EXPLICIT EXAMPLE FOR Nc ¼ 3

We illustrate here the construction of the baryon states used in this paper, given in Eq. (10), on the example of the N5=2

state. This is a member of the 70� multiplet for Nc ¼ 3 with quantum numbers I ¼ 1=2, J ¼ 5=2.
We start by constructing the MS basis of spin-flavor states given in Eq. (4). They are defined as j�ki ¼ ðP1k � 1Þj�i,

where the reference state j�i is chosen as an eigenstate of S2, S3, I
2, I3
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j�i ¼ ðjq1i � jic ¼ 1iÞI¼ð1=2Þ;S¼ð3=2Þ
I3¼þð1=2Þ;S3¼þð3=2Þ

¼ 1

3
ð2d"u"u" � u"u"d" � u"d"u"Þ: (B1)

We indicate explicitly the spin and isospin couplings,
which were dropped in the main text. The normalization
of j�i is chosen so that the basis states satisfy Eq. (5). We
obtain

j�2i ¼ u"d"u" � d"u"u"; (B2)

j�3i ¼ u"u"d" � d"u"u": (B3)

Applying the total isospin operator

I2 ¼ 9

4
þ 1

2

X
i<j

ð�3i �3j þ 2�þi ��j þ 2��i �þj Þ (B4)

with �� ¼ ð�1 � i�2Þ=2, where ~� are the Pauli matrices, it
is easy to check that these states have the same quantum
numbers as the reference state j�i. Combining the spin-
flavor and orbital components, our symmetrized state
Eq. (10) is given by

jBi ¼ X3
k;l¼2

�k�lMkl

¼ �2�2 þ�3�3 � 1

2
ð�2�3 þ�3�2Þ (B5)

with the MS orbital basis wave functions �2 ¼ spþs�
pþss, �3 ¼ sspþ � pþss, and reads explicitly

jBi ¼ ~dþ" u"u" þ u" ~dþ" u" þ u"u" ~dþ" � 1

2
ð~uþ" u"d" þ ~uþ" d"u"

þ u"~uþ" d" þ d"~uþ" u" þ u"d"~uþ" þ d"u"~uþ" Þ: (B6)

This state is symmetric under all three quarks, and is
normalized as hBjBi ¼ 9=2.

Next we compare this with the state constructed in
Ref. [7] (denoted as the CCGL state) which is given in
Eq. (15). Here we always choose to couple the excited
quark in the first position, which leads to the explicit form

jðLSÞJ; J3; I; I3iCCGL ¼ j
�
1;
3

2

�
5

2
;þ 5

2
;
1

2
;þ 1

2
i

¼ 1ffiffiffi
6

p ð~uþ" u"d" þ ~uþ" d"u" � 2~dþ" u"u"Þ
(B7)

where ~qþ denotes the quark no. 1 with orbital angular
momentum jL ¼ 1; L3 ¼ þ1i ¼ pþ.

The CCGL state Eq. (B7) can be written as jCCGLi ¼
�ðSIÞ � jpþssi with �ðS¼ 3

2 ;I¼ 1
2Þ¼ 1ffiffiffiffiffi

2�3p ðj�2iþj�3iÞ.
The relation of the symmetrized state Eq. (B6) with the
CCGL state given in Eq. (B7) is given by

1ffiffiffi
3

p X3
i¼1

P1ijCCGLi ¼ �
ffiffiffi
2

p
3

jBi (B8)

and agrees with Eq. (16).

APPENDIX C: THE PROOF OF EQ (37)

The matrix elements of a two-body symmetric operator
on the �i basis can be given in closed form, for any N.
Using the representation of the two-body operator ðklÞ ¼
Okl on the basis of Fock states, these matrix elements are

h�ijð1kÞj�ji ¼ ðId� IeÞð�ikþ�jkÞ þ Idð1��ikÞð1��jkÞ;
k¼ 2; � � � ;N (C1)

h�ijðklÞj�ji ¼ Id�ijð�ik þ �jlÞ þ Ieð�ik�jl þ �il�jkÞ;
k � l ¼ 2; � � � ; N: (C2)

We denoted here the two overlap integrals as Id ¼
hspjð12Þjspi; Ie ¼ hspjð12Þjpsi.
Using these expressions, the matrix element of operators

transforming into irreps of SN can be obtained by project-
ing onto the appropriate irrep.

h�ijOSj�ji ¼ h�ij
X

1�k<l�N
ðklÞj�ji ¼ hOSið1þ �ijÞ

(C3)

h�ijOMS
k j�ji ¼ hOMSið1� �ij�ikÞ (C4)

h�ijOE
klmj�ji ¼ hOEi 12 ½ð��ik þ �imÞð1þ �jlÞ

þ ð��jk þ �jmÞð1þ �ilÞ� (C5)

where the reduced matrix elements are

hOSi ¼ ðN � 1ÞId � Ie (C6)

hOMSi ¼ ðN � 2ÞId � 2Ie (C7)

hOEi ¼ 2Ie: (C8)

The matrix element of the interaction Hamiltonian in
Eq. (37) can be computed as

hBjVsymmjBi ¼
X

1�k<l<N
Tr½MðklÞMðklÞ� ¼ 1

2
NðN � 1ÞT

(C9)

where M is the matrix in Eq. (11) of the paper, and the
matrices ðklÞij are given above in Eqs. (C1). In the last step
we used the fact that each term in the sum is the same T,
such that the sum is simply the number of terms times T.
The result for the matrix element of Vsymm must be given

equivalently by Eq. (37) as a sum over the irreps S,MS, E
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hBjVsymmjBi ¼ N2

N � 1
ðcShOSi2 þ cMShOMSi2 þ cEhOEi2Þ

(C10)

where the reduced matrix elements are given above in
Eqs. (C6) in terms of the overlap integrals Id, Ie.
Comparing the two expressions for this matrix element
allows the determination of the coefficients cS;MS;E.

We start by computing the matrix element Eq. (C9). As
mentioned, each term in the sum is the same, and can be
computed as

T 
 Tr½Mð1kÞMð1kÞ�

¼ 2

�
1þ 1

ðN � 1Þ2
�
ðI2d þ I2eÞ � 8

N � 1
IdIe: (C11)

This must be matched by the expression Eq. (C10)

hBjVsymmjBi ¼ 1

2
NðN � 1ÞT

¼ 2N

ðN � 1Þ2 ½ðN � 1ÞId � Ie�2

þ N

N � 1
½ðN � 2ÞId � 2Ie�2

þ cE
N2

N � 1
½2Ie�2: (C12)

Matching the coefficients of I2d, IdIe and I
2
e on both sides of

this relation gives the coefficients of the three terms in
Eq. (C10) corresponding to the three irreps of SN:

cS ¼ 2

NðN � 1Þ ; cMS ¼ 1

N
; cE ¼ NðN � 3Þ

4ðN � 1Þ :
(C13)

This completes the proof of Eq. (37).

APPENDIX D: THE REDUCEDMATRIX ELEMENT
hOMSi

We present here the details of the derivation of the
reduced matrix element of an MS spin-flavor operator as
a matrix element on the CCGL state �ðSIÞ with fixed
identity of the ‘‘excited’’ quark (such as, e.g., Eq. (42)).
As explained in Sec. III A, this state is given by

�ðSIÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1Þp XN

k¼2

�k: (D1)

The matrix element of an MS operator on the MS basis
states is given by the SN Wigner-Eckart theorem

h�ijOMS
k j�ji ¼ hOMSið1� �ik�ijÞ: (D2)

Summing over the index k of the operator, the matrix
element on the �ðSIÞ state is

h�ðSIÞjXN
k¼2

OMS
k j�ðSIÞi ¼ ðN � 2ÞhOMSi; (D3)

which can be used to express hOMSi as a matrix element on
the CCGL-type spin-flavor state �ðSIÞ.
The advantage of taking the sum

P
N
k¼2 O

MS
k is that it

singles out the quark no. 1, just as in the state �ðSIÞ. An
explicit calculation gives

XN
k¼2

OMS
k ¼

8<
:
�2

P
i<j

Os
ij þ N

PN
i¼2 O

s
1i for symmetric two-body operators

N
PN
i¼2 O

a
1i for antisymmetric two-body operators

: (D4)

Using this relation, one finds, for example, for the spin-spin interaction Oij ¼ ~si � ~sj
XN
k¼2

OMS
k ¼ � ~S2 þ N~s1 � ~Sc þ 3

4
N; (D5)

which gives directly Eq. (42) after combining it with Eq. (D3).
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