10 research outputs found

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure

    Get PDF
    Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle - compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies

    Postnatal lamb behavior was observed from the time that lambs fully cleared the birth canal (time 0).

    No full text
    <p>Time taken to use hind limbs (A), four legs (B), stand stable for &gt;5 sec (C), find the udder (D) and successfully suckle (E) for full-term control (n = 6), preterm control (n = 5) and UCO lambs (n = 5) were recorded. The percentage of time spent active from 4 to 23 h was also monitored (G). Data are expressed as mean ± SEM. <i>p</i>&lt;0.05.</p

    Photomicrograph showing changes to the cerebrovasculature following UCO.

    No full text
    <p>Panels A–C show albumin staining in the cortical gray (CxGM) and subcortical white matter (CxWM) of a full term (A), a preterm (B) and a UCO lambs (C). Albumin extravasation (brown staining) consistent with blood brain barrier permeability disruption was observed throughout the brain in UCO lambs (C). Note the positive albumin staining around a blood vessels (circle), as well as in cells (arrows). The insert in C is a high power photomicrograph showing the albumin staining surrounding a blood vessel (BV), as well as albumin positive cells, We observed moderate levels of albumin extravasation in some pre tem control lambs (B), while no albumin staining was noted in brains of full term control lambs. Panels D, E and F show Mallory trichrome staining in the periventricular white matter of a full term (D), preterm (E) and UCO lamb (F). Microbleeds were seen in UCO brains shown by degradation products of hemorrhage staining a muddy brown. No microbleeds were detected in full term or preterm control brains. G–I show GFAP immunohistochemistry and show normal perivascular astrocytes in the periventricular white matter of a full term (G) and preterm lamb (H); while blood vessels in UCO lamb were often seen to be devoid of astrocytic contact (I). BV = blood vessel. Scale bars: A–C = 100 µm; D–I = 20 µm.</p

    Hematoxylin &amp; Eosin (A–C).

    No full text
    <p>Few degenerating cells were seen in the cortical gray matter of full-term (A) and preterm (B) control lambs. UCO lambs showed extensive neuronal injury displaying feature of apoptosis seen by H&amp;E staining as scattered dark, shrunken cells with pyknotic or small, densely staining nuclei and eosinophilic cytoplasm (black arrows C). The insert in panel C is a high power micrograph showing a neuron exhibiting ischemic morphology (eosinophilia, and nuclear pyknosis). Panels D–F show activated Caspase-3 immunoreativity in the cortex of a full term (D), preterm (E) and UCO (F) lambs. Note the increased immunoreactivity of activated Caspase-3 in the cortex of UCO lambs compared with both control groups. Scale bars –50 µm. Panel G: Quantitative results show cleaved caspase-3 cell counts in the corpus callosum, periventricular white matter (PVWM), external capsule, cortex and subventricular zone (SVZ) for full-term control (n = 5), preterm control (n = 5) and UCO lambs (n = 6) (G). Data are expressed as mean ± SEM. <i>p</i>&lt;0.05. White, gray and black bars represent full term, pre term and UCO lambs respectively.</p

    Gestational age, and body weights at birth for lambs born after a normal pregnancy (Full-term control, n = 8), after experiencing 10 mins of cord occlusion <i>in utero</i> at 132 days gestation (UCO, n = 6), or after induction of preterm birth by treatmen

    No full text
    <p>Age at delivery shown as median (range), all other data shown as mean ± SEM.</p>*<p>indicates <i>p</i>&lt;0.05, compared to full-term controls.</p>†<p>indicates P&lt;0.05 UCO compared to preterm group. Abbreviation: UCO, umbilical cord occlusion.</p

    Luxol fast blue staining on brain sections of full term control (A), preterm control (B) and UCO lamb (C) in the corpus callosum.

    No full text
    <p>Myelin irregularities (disruption) seen as patchiness (asterisks in C) were detected only in UCO lambs. Panels D–F show CNPase immunohistochemistry in the corpus callosum of a full term (D), preterm (E) and UCO lamb, confirmed myelin disruption seen as patchy staining (asterisks). Myelin disruption was also seen in the periventicular white matter of UCO lambs both with luxol fast blue (I) and CNPase (L) (asterisks). Myelination in full term (G &amp; J) and preterm (H &amp; K) appeared to be intact with both stains. Scale bars = 50 µm. Quantitative results show densitometry analysis of CNPase stained myelination (M) and CNPase positive cell bodies (N) in the corpus callosum, subcortical (CxWM) and periventricular white matter (PVWM), external and internal capsule for full-term control (n = 8), preterm control (n = 4) and UCO lambs (n = 5). Data are expressed as mean ± SEM. <i>p</i>&lt;0.05. White, gray and black bars represent full term, pre term and UCO lambs respectively.</p

    Hematoxylin &amp; Eosin staining of full term control (A, D &amp; G), preterm control (B, E &amp; H), and UCO lambs (C, F &amp;I).

    No full text
    <p>Normal cytoarchitecture of the cerebral cortex was seen in both full-term (A) and preterm brains (B). In UCO brains (C) subtle alterations in the cellular composition and spatial arrangement of neurons was seen throughout the cortical gray matter. Extensive neuronal injury (arrows) in the cortical gray matter of UCO lambs as well as areas devoid of neurons (asterisks). D &amp; E show normal pathology in the cortex of full term and preterm control lambs respectively. In UCO lambs (F) some other cellular degenerative changes were observed, such as vacuolation of brain parenchyma (arrow). The insert in panel F shows a high power view of the vacuolar degeneration, histologic features consistent with hypoxic/ischemic changes. Inflammatory cell infiltration was seen in the periventricular white matter of UCO lambs (I), as marked by the box, which showed the morphological appearance of eosinophils (i), lymphocytes (ii) and neutrophils (iii) (inserts in I). These were not seen in full term (G) or preterm control lambs (H). Panels J, K &amp; L are representative images of glial fibrillary acidic protein (GFAP) staining in the periventricular white matter of full term control, preterm control and UCO lambs respectively. UCO lambs displayed reactive astrocytosis. Note the dense staining of the enlarged cell bodies and the highlighted cell processes shown in the high power insert in panel L. Scale bars: A–F = 100 µm, G–L = 50 µm.</p
    corecore