577 research outputs found

    IODP Expedition 329: Life and Habitability Beneath the Seafloor of the South Pacific Gyre

    Get PDF
    Integrated Ocean Drilling Program (IODP) Expedition 329 made major strides toward fulfilling its objectives. Shipboard studies documented (1) fundamental aspects of habitability and life in this very low activity subseafloor sedimentary ecosystem and (2) first-order patterns of habitability within the igneous basement. A broad range of postexpedition studies will complete the expedition objectives. Throughout the South Pacific Gyre (SPG; Sites U1365–U1370), dissolved oxygen and nitrate are present throughout the entire sediment sequence, and sedimentary microbial cell counts are lower than at all previously drilled IODP/ Ocean Drilling Program (ODP)/Deep Sea Drilling Program (DSDP) sites. In contrast, at Site U1371 in the upwelling zone just south of the gyre, detectable oxygen and nitrate are limited to the top and bottom of the sediment column, manganese reduction is a prominent electron-accepting process, and cell concentrations are higher than at the same depths in the SPG sites throughout the sediment column. Geographic variation in subseafloor profiles of dissolved and solid-phase chemicals are consistent with the magnitude of organic-fueled subseafloor respiration declining from outside the gyre to the gyre center. Chemical profiles in the sedimentary pore water and secondary mineral distributions in the basaltic basement indicate that basement alteration continues on the timescale of formation fluid replacement, even at the sites with the oldest basement (84–120 Ma at Sites U1365 and U1366)

    Benthic Foraminifera from the NECOP Study Area Impacted by the Mississippi River Plume and Seasonal Hypoxia

    Get PDF
    Benthic foraminifera influenced by the Mississippi River plume and seasonal hypoxia were assessed from Louisiana inner-continental shelf sediment samples. Surface foraminifera assemblages were representative of in-situ populations as established by staining techniques. Community diversity and richness/evenness analyses indicate three regimes: high stress (sediment dominated), intermediate stress (hypoxia dominated), and low stress (low sediment accumulation/high oxygen). Epistominella vitrea and Buliminella morgani are useful tracers of rapid sediment accumulation rate and hypoxia. A bottom-water productivity signal west of the Mississippi River plume is indicated by benthic and planktic foraminifera abundance peaks. Surface benthic foraminifera trends are utilized to interpret changes in historical community structure from hypoxic-area sediments deposited since the turn of the century. The hypoxia-tolerant species Buliminella morgani increases markedly upcore, while hypoxia intolerant species decrease or disappear. Diversity and dominance trends temporally correspond to a dramatic increase in U.S. fertilizer application. The results of this study have application to paleoenvironmental research spanning longer geologic timescales. The documented relationships between population structure and stressors in river-dominated marine systems may provide a useful analog for recognition of these conditions in the fossil record

    IODP Expedition 323—Pliocene and Pleistocene Paleoceanographic Changes in the Bering Sea

    Get PDF
    High-resolution paleoceanography of the Plio-Pleistocene is important in understanding climate forcing mechanisms and the associated environmental changes. This is particularly true in high-latitude marginal seas such as the Bering Sea, which has been very sensitive to changes in global climate during interglacial and glacial or Milankovitch time scales. This is due to significant changes in water circulation, land-ocean interaction, and sea-ice formation. With theaim to reveal the climate and oceanographic history of the Bering Sea over the past 5 Ma, Integrated Ocean Drilling Program (IODP) Expedition 323 cored a total of 5741 meters of sediment (97.4% recovery) at seven sites covering three different areas: Umnak Plateau, Bowers Ridge, and the Bering slope region. Four deep holes range from 600 m to 745 m spanning in age from 1.9 Ma to 5 Ma. The water depths (819 m to 3173 m) allow characterization of past verticalwater mass distribution such as the oxygen minimum zone (OMZ). The results highlight three key points. (1) The first is an understanding of long-term evolution of surface-water mass distribution during the past 5 Ma including past sea-ice distribution and warm and less eutrophic subarctic Pacific water mass entry into the Bering Sea. (2) We characterized relatively stagnant intermediate water mass distribution imprinted as laminated sediment intervals that have beenubiquitously encountered. Today, the OMZ impinges upon the sediments at ~700–1600 m water depths. In the past, the OMZ appears to have occurred mainly during interglacial periods. Changes in low oxygen-tolerant benthic foraminiferal faunas clearly concur with this observation. (3) We also characterized significant changes between glacial episode of terrigenous sedimentary supply and interglacialepisode of diatom flux

    Environmental Analysis of Cores from the Helike Delta, Gulf of Corinth, Greece

    Get PDF
    The fan delta southeast of Aigion on the southwest shore of the Gulf of Corinth was the site of ancient Helike, a city destroyed and submerged by an earthquake and seismic sea wave in 373 BC. Bore holes drilled on the Helike Delta yielded numerous ceramic fragments in the upper 12 meters, and a record of changing local environments on the delta during the Holocene period. At about 8 m below present sea level the core profiles show a general upward transition from marine to lacustrine/lagoonalc onditions.T he transition dates from about 8 kyr BP and is probably due to the deceleration of global sea level rise at the end of the last Ice Age. The deceleration apparently induced an upward and seaward progression of a zone of green clay and silt associated with brackish fauna

    Expedition 396 Preliminary Report: Mid-Norwegian Margin Magmatism and Paleoclimate Implications6 August–5 October 2021,

    Get PDF
    The opening of the North Atlantic about 56 My ago was associated with the emplacement of the North Atlantic Igneous Province, including the deposition of voluminous extrusive basaltic successions and intrusion of magma into the surrounding sedimentary basins. The mid-Norwegian Margin is a global type example of such volcanic rifted margins and is well suited for scientific drilling with its thin sediment cover and good data coverage. During International Ocean Discovery Program Expedition 396, 21 boreholes were drilled at 10 sites in five different geological settings on this volcanic margin. The boreholes sampled a multitude of igneous and sedimentary settings ranging from lava flow fields to hydrothermal vent complexes, along with thick successions of upper Paleocene and lower Eocene strata. A comprehensive suite of wireline logs was collected in eight boreholes. The main goals of the expedition were to provide constraints for geodynamic models to test different hypotheses that can explain the rapid emplacement of large igneous provinces and the hypothesis that the associated Paleocene/Eocene Thermal Maximum was caused by hydrothermal release of carbon in response to magmatic intrusions. Successful drilling, combined with high core recovery of target intervals of all nine primary sites and one additional alternate site, should allow us to achieve these goals during postcruise work

    IODP Expeditions 303 and 306 Monitor Miocene-Quaternary Climate in the North Atlantic

    Get PDF
    Introduction The IODP Expeditions 303 and 306 drilling sites were chosen for two reasons: (1) to capture Miocene-Quaternary millennial-scale climate variability in sensitive regions at the mouth of the Labrador Sea and in the North Atlantic icerafted debris (IRD) belt (Ruddiman et al., 1977), and (2) to provide the sedimentary and paleomagnetic attributes, including adequate sedimentation rates, for constructinghigh-resolution isotopic and magnetic stratigraphies.High accumulation rates, reaching 20 cm ky-1, permit the study of millennial-scale variations in climate and in the Earth's magnetic fi eld over the past several million years, when the amplitude and frequency of climate variability changed substantially. Shipboard logging and scanning data (magnetic susceptibility and remanence, density, natural gamma radiation, digital images and color refl ectance) and post-expedition x-ray fl uorescence (XRF) scanning datahave revealed that the sediment cores recovered on Expeditions 303 and 306 contain detailed histories of millennial-scale climate and geomagnetic fi eld variability throughout the late Miocene to Quaternary epochs. The climate proxies will be integrated with paleomagnetic data to place the records of millennial-scale climate change into a high resolution stratigraphy based on oxygen isotope andrelative paleomagnetic intensity (RPI). The paleomagnetic record of polarity reversals, excursions and RPI in these cores is central to the construction of the stratigraphic template and will provide detailed documentation of geomagnetic fi eld behavior

    Anomalous widespread arid events in Asia over the past 550,000 years

    Get PDF
    Records of element ratios obtained from the Maldives Inner Sea sediments provide a detailed view on how the Indian Monsoon System has varied at high-resolution time scales. Here, we present records from International Ocean Discovery Program (IODP) Site U1471 based on a refined chronology through the past 550,000 years. The record's high resolution and a proper approach to set the chronology allowed us to reconstruct changes in the Indian Monsoon System on a scale of anomalies and to verify their relationships with established records from the East Asian Monsoon System. On the basis of Fe/sum and Fe/Si records, it can be demonstrated that the Asia continental aridity tracks sea-level changes, while the intensity of winter monsoon winds responds to changes in Northern Hemisphere summer insolation. Furthermore, the anomalies of continental aridity and intensity of winter monsoon winds at millennial-scale events exhibit power in the precession band, nearly in antiphase with Northern Hemisphere summer insolation. These observations indicate that the insolation drove the anomalies in the Indian Summer Monsoon. The good correspondence between our record and the East Asian monsoon anomaly records suggests the occurrence of anomalous widespread arid events in Asia.info:eu-repo/semantics/publishedVersio
    • …
    corecore