7,149 research outputs found
Drift Correction Methods for gas Chemical Sensors in Artificial Olfaction Systems: Techniques and Challenges
In this chapter the authors introduce the main challenges faced when developing drift correction techniques and will propose a deep overview of state-of-the-art methodologies that have been proposed in the scientific literature trying to underlying pros and cons of these techniques and focusing on challenges still open and waiting for solution
3D Laparoscopy. A potential cutting edge in minimal invasive digestive surgery
Laparoscopic surgery has changed surgical landscape, providing reduced surgical trauma, shorter hospital stays, less postoperative pain and
better outcomes than open surgery. Since its first development in the 90’s, 3D technology applied to laparoscopic surgery has had several technical
improvements and now it represents, together with high definition technology, the best option in minimal invasive digestive surgery, providing shorter
operative times and lower blood loss, making easier to perform surgical tasks both for trainees than for skilled surgeons. It remains a little bit more
expensive than standard 2D laparoscopic devices but even cheaper than robotic equipment
Optofluidic fabrication for 3D-shaped particles.
Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated
Salivary bacterial leakage into implant-abutment connections: preliminary results of an in vitro study
OBJECTIVE: The occurrence of bacterial leakage in the internal surface of implants, through implant-abutment interface (IAI), is one of the parameters for analyzing the fabrication quality of the connections. The aim of this in vitro study is to evaluate two different types of implant-abutment connections: the screwed connection (Group 1) and the cemented connection (Group 2), analyzing the permeability of the IAI to bacterial colonization, using human saliva as culture medium. PATIENTS AND METHODS: A total of twelve implants were tested, six in each experimental group. Five healthy patients were enrolled in this study. Two milliliters of non-stimulated saliva were collected from each subject and mixed in a test tube. After 14 days of incubation of the bacteria sample in the implant fixtures, a PCR-Real Time analysis was performed. Fisher's exact test was used to compare the proportions of implant-abutment assembled structures detected with bacterial leakage. Differences in the bacterial counts of the two groups were compared using the Mann-Whitney U test. A p value < 0.05 was considered significant. RESULTS: The results showed a decreased stability with the screwed implant-abutment connections compared to the cemented implant-abutment connections. A mean total bacterial count of 1.2E+07 (± 0.25E+07) for Group 1 and of 7.2E+04 (± 14.4E+04) for Group 2 was found, with a high level of significance, p = .0001. CONCLUSIONS: Within the limitations of this study it can be concluded that bacterial species from human saliva may penetrate along the implant-abutment interface in both connections, however the cemented connection implants showed the lowest amount of bacterial colonization
Infrastructures and Algorithms for Testable and Dependable Systems-on-a-Chip
Every new node of semiconductor technologies provides further miniaturization and higher performances, increasing the number of advanced functions that electronic products can offer. Silicon area is now so cheap that industries can integrate in a single chip usually referred to as System-on-Chip (SoC), all the components and functions that historically were placed on a hardware board. Although adding such advanced functionality can benefit users, the manufacturing process is becoming finer and denser, making chips more susceptible to defects. Today’s very deep-submicron semiconductor technologies (0.13 micron and below) have reached susceptibility levels that put conventional semiconductor manufacturing at an impasse. Being able to rapidly develop, manufacture, test, diagnose and verify such complex new chips and products is crucial for the continued success of our economy at-large. This trend is expected to continue at least for the next ten years making possible the design and production of 100 million transistor chips.
To speed up the research, the National Technology Roadmap for Semiconductors identified in 1997 a number of major hurdles to be overcome. Some of these hurdles are related to test and dependability.
Test is one of the most critical tasks in the semiconductor production process where Integrated Circuits (ICs) are tested several times starting from the wafer probing to the end of production test. Test is not only necessary to assure fault free devices but it also plays a key role in analyzing defects in the manufacturing process. This last point has high relevance since increasing time-to-market pressure on semiconductor fabrication often forces foundries to start volume production on a given semiconductor technology node before reaching the defect densities, and hence yield levels, traditionally obtained at that stage. The feedback derived from test is the only way to analyze and isolate many of the defects in today’s processes and to increase process’s yield.
With the increasing need of high quality electronic products, at each new physical assembly level, such as board and system assembly, test is used for debugging, diagnosing and repairing the sub-assemblies in their new environment. Similarly, the increasing reliability, availability and serviceability requirements, lead the users of high-end products performing periodic tests in the field throughout the full life cycle.
To allow advancements in each one of the above scaling trends, fundamental changes are expected to emerge in different Integrated Circuits (ICs) realization disciplines such as IC design, packaging and silicon process. These changes have a direct impact on test methods, tools and equipment. Conventional test equipment and methodologies will be inadequate to assure high quality levels. On chip specialized block dedicated to test, usually referred to as Infrastructure IP (Intellectual Property), need to be developed and included in the new complex designs to assure that new chips will be adequately tested, diagnosed, measured, debugged and even sometimes repaired.
In this thesis, some of the scaling trends in designing new complex SoCs will be analyzed one at a time, observing their implications on test and identifying the key hurdles/challenges to be addressed. The goal of the remaining of the thesis is the presentation of possible solutions. It is not sufficient to address just one of the challenges; all must be met at the same time to fulfill the market requirements
Monolithic zirconia and digital impression: case report
The aim of this study is to present a clinical case of a full arch prosthetic rehabilitation on natural teeth, combining both digital work-flow and monolithic zirconi
Defining directors’ conflict of interests in code of ethics
We propose a definition of directors’ conflict of interests (CoI) by critically reviewing the academic literature. Then, we present an exploratory study, based on a content analysis of the leading Italian listed companies that sought to empirically assess the directors’ CoI definitions provided by corporate codes of ethics. We found that despite the presence of CoI statement within corporate codes of ethics, CoI definition is often absent, when present it is not always clear, and differs widely among firms. The consequence is that CoI recognition could be not easy and remedies to prevent and resolve directors’ CoI lose their practical utility
Critical behaviour of the O(3) nonlinear sigma model with topological term at theta=pi from numerical simulations
We investigate the critical behaviour at theta=pi of the two-dimensional O(3)
nonlinear sigma model with topological term on the lattice. Our method is based
on numerical simulations at imaginary values of theta, and on scaling
transformations that allow a controlled analytic continuation to real values of
theta. Our results are compatible with a second order phase transition, with
the critical exponent of the SU(2)_1 Wess-Zumino-Novikov-Witten model, for
sufficiently small values of the coupling.Comment: Revised version. 24 pages, 7 figure
NonClassicality Criteria in Multiport Interferometry
Interference lies at the heart of the behavior of classical and quantum
light. It is thus crucial to understand the boundaries between which
interference patterns can be explained by a classical electromagnetic
description of light and which, on the other hand, can only be understood with
a proper quantum mechanical approach. While the case of two-mode interference
has received a lot of attention, the multimode case has not yet been fully
explored. Here we study a general scenario of intensity interferometry: we
derive a bound on the average correlations between pairs of output intensities
for the classical wavelike model of light, and we show how it can be violated
in a quantum framework. As a consequence, this violation acts as a
nonclassicality witness, able to detect the presence of sources with
sub-Poissonian photon-number statistics. We also develop a criterion that can
certify the impossibility of dividing a given interferometer into two
independent subblocks.Comment: 5 + 3 pages, published versio
Aesthetic satisfaction in lip and palate clefts: a comparative study between secondary and tertiary bone grafting
Lip and palate cleft represent one of the most frequently occurring congenital deformity, which includes dental anomalies, such as variation in tooth number and position. In case of hypodontia implant-prosthetic rehabilitation offers significant advantages in terms of function, aesthetics and quality of life and bone graft is usually needed. Secondary bone grafting, generally performed in the mixed dentition phase (years 8-11) seems to be the most successful method to allow for rehabilitation. It's often necessary to perform a tertiary bone grafting in adult age in order to achieve better bone quantity and quality before implant placement. Aim of this retrospective study was to evaluate the aesthetic perception that patients had of themselves comparing dental implants placed in tertiary grafted alveolar cleft sites with a previous secondary grafting to only secondary grafting. Between 2009 and 2012, fourteen alveolar cleft were treated with implant rehabilitation and eleven of them received tertiary bone grafting six months prior to implant placement. All patients were questioned to give a score from 1 to 10 their aesthetic satisfaction of their smile before and after implant rehabilitation and during pre-surgery provisional rehabilitation. At the end of their prosthesis rehabilitation patients who received tertiary bone grafting resulted more satisfied than those who had secondary bone grafting only (9.5 vs 8)
- …