863 research outputs found

    Circular 110

    Get PDF

    Circular 89

    Get PDF
    A yield trial in which 43 named varieties and numbered selections of potatoes were compared was conducted during the 1991 growing season at the University of Alaska Fairbanks, Agricultural and Forestry Experiment Station’s Palmer Research Center, Matanuska Research Farm, located six miles west of Palmer, Alaska. Varieties with a history of commercial production in the Matanuska Valley (Alaska 114, Bake-King, Green Mountain, and Superior) are included and serve as a comparative base for newly developed varieties, numbered selections or older varieties that have not been tested at this location. Varieties that compare favorably with the above listed standards may warrant consideration by commercial growers. Nonirrigated trials have been conducted annually since 1982, whereas irrigated trials were initiated in 1985 (AFES Circulars 49, 54, 58, 65, 71, 77, and 84). These circulars are available at the AFES Offices in Fairbanks and Palmer. Included in this report are the results of abbreviated versions of the AFES potato yield trial conducted by cooperating individuals and agencies at other locations in Alaska including Delta Junction, Fairbanks, Homer, Kenai- Soldotna, and Kodiak.[Part 1: Potato Variety Performance] -- Introduction -- Matanuska Farm Yield Trials -- Trials at Other Locations in Alaska -- [Part 2: Commercial Potato Crop Data Summary] -- Introduction -- Potato Varieties and Yields -- Acreage per grower -- Irrigation -- Seed and Planting -- Fertilizer -- Other Cultural Practices -- Chemical Contro

    Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach?

    Get PDF
    Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine: a) the association between competitive physical performance and ‘success’ in professional soccer, b) current approaches to interpreting differences in time-motion analysis data across playing positions and, c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified

    A four-season prospective study of muscle strain reoccurrences in a professional football club

    Get PDF
    The aim of this investigation was to characterise muscle strain reinjuries and examine their impact on playing resources in a professional football club. Muscle strains and reoccurrences were prospectively diagnosed over four seasons in first-team players (n = 46). Altogether, 188 muscle strains were diagnosed with 44 (23.4%) of these classed as reinjuries, leading to an incidence of 1.32 strain reoccurrences per 1,000 hours exposure (95% Confidence Interval [CI], 0.93–1.71). The incidence of recurrent strains was higher in match-play compared with training (4.51, 95% CI, 2.30–6.72 vs 0.94, 95% CI, 0.59–1.29). Altogether, 50.0% of players sustained at least 1 reoccurrence of a muscle strain, leading to approximately 3 days lost and 0.4 matches missed per player per season. The incidence of recurrent strains was highest in centre-forwards (2.15, 95% CI, 1.06–3.24), peaked in May (3.78, 95% CI, 0.47–7.09), and mostly affected the hamstrings (38.6% of all reoccurrences). Mean layoff for nonreoccurrences and recurrences was similar: ∼7.5 days. These results provide greater insight into the extent of the problem of recurrent muscle strains in professional football

    A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of <it>Eucalyptus</it>, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of <it>Eucalyptus</it>.</p> <p>Findings</p> <p>After testing several genome complexity reduction methods we identified the <it>Pst</it>I/<it>Taq</it>I method as the most effective for <it>Eucalyptus </it>and developed 18 genomic libraries from <it>Pst</it>I/<it>Taq</it>I representations of 64 different <it>Eucalyptus </it>species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56%) were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the <it>E. grandis </it>tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees.</p> <p>Conclusions</p> <p>This operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees and thus provide high genome coverage. This array will also provide a high-throughput platform for population genetics and phylogenetics in <it>Eucalyptus</it>. The transferability of DArT across species and pedigrees is particularly valuable for a large genus such as <it>Eucalyptus </it>and will facilitate the transfer of information between different studies. Furthermore, the DArT marker array will provide a high-resolution link between phenotypes in populations and the <it>Eucalyptus </it>reference genome, which will soon be completed.</p

    Nucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations to classical theory

    Get PDF
    Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which for low supersaturations of the solid solution have the L12 structure. The aim of the present study is to model at an atomic scale this kinetics of precipitation and to build a mesoscopic model based on classical nucleation theory so as to extend the field of supersaturations and annealing times that can be simulated. We use some ab-initio calculations and experimental data to fit an Ising model describing thermodynamics of the Al-Zr and Al-Sc systems. Kinetic behavior is described by means of an atom-vacancy exchange mechanism. This allows us to simulate with a kinetic Monte Carlo algorithm kinetics of precipitation of Al3Zr and Al3Sc. These kinetics are then used to test the classical nucleation theory. In this purpose, we deduce from our atomic model an isotropic interface free energy which is consistent with the one deduced from experimental kinetics and a nucleation free energy. We test di erent mean-field approximations (Bragg-Williams approximation as well as Cluster Variation Method) for these parameters. The classical nucleation theory is coherent with the kinetic Monte Carlo simulations only when CVM is used: it manages to reproduce the cluster size distribution in the metastable solid solution and its evolution as well as the steady-state nucleation rate. We also find that the capillary approximation used in the classical nucleation theory works surprisingly well when compared to a direct calculation of the free energy of formation for small L12 clusters.Comment: submitted to Physical Review B (2004

    The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth.

    Get PDF
    The glycerophospholipid phosphatidylcholine is the most abundant phospholipid species of eukaryotic membranes and essential for structural integrity and signaling function of cell membranes required for cancer cell growth. Inhibition of choline kinase alpha (CHKA), the first committed step to phosphatidylcholine synthesis, by the selective small-molecule ICL-CCIC-0019, potently suppressed growth of a panel of 60 cancer cell lines with median GI50 of 1.12 μM and inhibited tumor xenograft growth in mice. ICL-CCIC-0019 decreased phosphocholine levels and the fraction of labeled choline in lipids, and induced G1 arrest, endoplasmic reticulum stress and apoptosis. Changes in phosphocholine cellular levels following treatment could be detected non-invasively in tumor xenografts by [18F]-fluoromethyl-[1,2–2H4]-choline positron emission tomography. Herein, we reveal a previously unappreciated effect of choline metabolism on mitochondria function. Comparative metabolomics demonstrated that phosphatidylcholine pathway inhibition leads to a metabolically stressed phenotype analogous to mitochondria toxin treatment but without reactive oxygen species activation. Drug treatment decreased mitochondria function with associated reduction of citrate synthase expression and AMPK activation. Glucose and acetate uptake were increased in an attempt to overcome the metabolic stress. This study indicates that choline pathway pharmacological inhibition critically affects the metabolic function of the cell beyond reduced synthesis of phospholipids

    AMPK activation protects against prostate cancer by inducing a catabolic cellular state

    Get PDF
    Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome

    Integrating Evolutionary and Functional Tests of Adaptive Hypotheses: A Case Study of Altitudinal Differentiation in Hemoglobin Function in an Andean Sparrow, \u3ci\u3eZonotrichia capensis\u3c/i\u3e

    Get PDF
    In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined by the prevailing partial pressure of atmospheric O2, the efficacy of pulmonary O2 transfer, and internal metabolic demands. Consequently, genetic variation in the oxygenation properties of hemoglobin (Hb) may be subject to spatially varying selection in species with broad elevational distributions. Here we report the results of a combined functional and evolutionary analysis of Hb polymorphism in the rufouscollared sparrow (Zonotrichia capensis), a species that is continuously distributed across a steep elevational gradient on the Pacific slope of the Peruvian Andes. We integrated a population genomic analysis that included all postnatally expressed Hb genes with functional studies of naturally occurring Hb variants, as well as recombinant Hb (rHb) mutants that were engineered through site-directed mutagenesis. We identified three clinally varying amino acid polymorphisms: Two in the αA-globin gene, which encodes the α-chain subunits of the major HbA isoform, and one in the αD-globin gene, which encodes the α-chain subunits of the minor HbD isoform. We then constructed and experimentally tested single- and double-mutant rHbs representing each of the alternative αA-globin genotypes that predominate at different elevations. Although the locusspecific patterns of altitudinal differentiation suggested a history of spatially varying selection acting on Hb polymorphism, the experimental tests demonstrated that the observed amino acid mutations have no discernible effect on respiratory properties of the HbA or HbD isoforms. These results highlight the importance of experimentally validating the hypothesized effects of genetic changes in protein function to avoid the pitfalls of adaptive storytelling
    • …
    corecore