627 research outputs found

    Perturbation of the sierpinski antenna to allocate the operating bands

    Get PDF
    A scheme for modifying the spacing between the bands of the Sierpinski antenna is introduced. Experimental results of two novel designs of fractal antennas suggest that the fractal structure can be perturbed to enable the log-period to be changed while still maintaining the multiband behaviour of the antenna.Peer ReviewedPostprint (published version

    Miniature Wideband stacked microstrip patch antenna based on the sierpinski fractal geometry

    Get PDF
    The main interest in the design of a miniature microstrip patch antenna (MPA) is its small size in conjunction with the well-known advantages of a MPA (cost, profile, weight). However there is a big constraint on the bandwidth limitation either in a miniature antenna or in a MPA. The proposed solution to overcome such problem is to couple a miniature parasitic resonator to the miniature active patch forming a wideband small stacked microstrip patch antenna.Peer ReviewedPostprint (published version

    Small but long koch fractal monopole

    Get PDF
    A small but long wire fractal antenna based on the Koch curve is presented. Experimental and numerical results show that the antenna improves the features of a common linear monopole. The radiation resistance is increased and the Q is reduced at each fractal iteration, approaching the fundamental limit on small antennas.Peer ReviewedPostprint (published version

    Active zone self-similarity of fractal sierpinski antenna verified using infra-red thermograms

    Get PDF
    The surface current distribution of a Sierpinski fractal antenna shows a self-similar behaviour determined by the self-similar properties of its geometry. The application of infra-red thermography to electromagnetic near field detection allows the experimental verification of the active region scaling of a fractal antenna operating at different bands.Peer ReviewedPostprint (published version

    Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential

    Full text link
    We review some recent results on nonlinear Schrodinger equations with potential, with emphasis on the case where the potential is a second order polynomial, for which the interaction between the linear dynamics caused by the potential, and the nonlinear effects, can be described quite precisely. This includes semi-classical regimes, as well as finite time blow-up and scattering issues. We present the tools used for these problems, as well as their limitations, and outline the arguments of the proofs.Comment: 20 pages; survey of previous result

    Measurement of absorption in scattering media using objective laser speckle: application to blood oximetry

    Get PDF
    Multi-spectral imaging enables non-invasive sensing of chemical concentrations in biological tissue based on measurement of optical absorption, but invariably in the presence of high levels of scatter. Absorption is normally inferred from measurement of contrast of biological features, such as the vasculature, and so accuracy is degraded by the poorly characterized modulation-transfer function of the imaging optics and overlying tissue. We report how experimental characterization of the spectral variation of the tissue point-spread function and associated objective speckle pattern can be used to characterize the absorption spectrum and chromophore concentration, with a particular emphasis on determination of the ratio of oxygenated to deoxygenated hemoglobin within blood. Absorption measurements are determined purely by the geometry of the experiment, without degradation due to optical aberrations and associated light scatter. The technique offers enhanced and low-cost determination of in vitro or in vivo chromophore characterizations, including blood-gas analysis

    The Origin of the Iron-Rich Knot in Tycho's Supernova Remnant

    Get PDF
    X-ray observations of supernova remnants (SNRs) allow us to investigate the chemical inhomogeneity of ejecta, offering unique insight into the nucleosynthesis in supernova explosions. Here we present detailed imaging and spectroscopic studies of the "Fe knot" located along the eastern rim of the Type Ia SNR Tycho (SN 1572) using Suzaku and Chandra long-exposure data. Surprisingly, the Suzaku spectrum of this knot shows no emission from Cr, Mn, or Ni, which is unusual for the Fe-rich regions in this SNR. Within the framework of the canonical delayed-detonation models for SN Ia, the observed mass ratios M_Cr/M_Fe < 0.023, M_Mn/M_Fe < 0.012, and M_Ni/M_Fe < 0.029 (at 90% confidence) can only be achieved for a peak temperature of (5.3-5.7) x 10^9 K and a neutron excess of < 2.0 x 10^-3. These constraints rule out the deep, dense core of a Chandrasekhar-mass white dwarf as the origin of the Fe knot, and favors either incomplete Si burning or the alpha-rich freeze-out regime, probably close to their boundary. An explosive He burning regime is a possible alternative, although this hypothesis is in conflict with the main properties of this SNR.Comment: 13 pages, 13 figures, accepted for publication in Ap

    The Koch monopole: a small fractal antenna

    Get PDF
    Fractal objects have some unique geometrical properties. One of them is the possibility to enclose in a finite area an infinitely long curve. The resulting curve is highly convoluted being nowhere differentiable. One such curve is the Koch curve. In this paper, the behavior the Koch monopole is numerically and experimentally analyzed. The results show that as the number of iterations on the small fractal Koch monopole are increased, the Q of the antenna approaches the fundamental limit for small antennas.Peer Reviewe

    Evidence for Particle Acceleration to the Knee of the Cosmic Ray Spectrum in Tycho’s Supernova Remnant

    Get PDF
    Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the knee of the CR spectrum at 10^15 eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since cosmic ray nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration modifies significantly the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho\u27s supernova (SN 1572, henceforth Tycho), which reveal a previously unknown, strikingly ordered pattern of non-thermal high-emissivity stripes in the projected interior of the remnant, with spacing that corresponds to the gyroradii of 10^14 - 10^15 eV} protons. Spectroscopy of the stripes shows the plasma to be highly turbulent on the (smaller) scale of the Larmor radii of TeV energy electrons. Models of the shock amplification of magnetic fields produce structure on the scale of the gyroradius of the highest energy CRs present, but they do not predict the highly-ordered pattern we observe. We interpret the stripes as evidence for acceleration of particles to near the knee of the CR spectrum in regions of enhanced magnetic turbulence, while the observed highly ordered pattern of these features provides a new challenge to models of DSA
    corecore