647 research outputs found

    Characterisation of the carboxypeptidase G2 catalytic site and design of new inhibitors for cancer therapy

    Get PDF
    The enzyme carboxypeptidase G2 (CPG2) is used in antibody‐directed enzyme prodrug therapy (ADEPT) to catalyse the formation of an active drug from an inert prodrug. Free CPG2 in the bloodstream must be inhibited before administration of the prodrug in order to avoid a systemic reaction in the patient. Although a few small‐molecule CPG2 inhibitors have been reported, none has been taken forward thus far. This lack of progress is due in part to a lack of structural understanding of the CPG2 active site as well as the absence of small molecules that can block the active site whilst targeting the complex for clearance. The work described here aimed to address both areas. We report the structural/functional impact of extensive point mutation across the putative CPG2 catalytic site and adjacent regions for the first time, revealing that residues outside the catalytic region (K208A, S210A and T357A) are crucial to enzyme activity. We also describe novel molecules that inhibit CPG2 whilst maintaining the accessibility of galactosylated moieties aimed at targeting the enzyme for clearance. This work acts as a platform for the future development of high‐affinity CPG2 inhibitors that occupy new chemical space and will advance the safe application of ADEPT in cancer treatment

    Similar IgE binding patterns in Gulf of Mexico and Southeast Asian shrimp species in US shrimp allergic patients

    Get PDF
    [Extract] Shellfish allergy (SA) is a leading cause of food-induced anaphylaxis1 and one of the most common causes of adult-onset food allergy worldwide, with 1%–3% of the United States (US) population affected.2-4 Nearly half (45%) of US adults with SA report utilizing emergency services for SA symptoms over their lifetime,2 remaining at-risk for lethal allergic reactions. Several allergenic proteins have been identified across shellfish species, including tropomyosin (TM), arginine kinase (AK), myosin light chain (MLC), sarcoplasmic calcium-binding protein (SCP), hemocyanin, troponin C, and triosephosphate isomerase.5 (Table 1.) However, there are a large number of shrimp allergens that have been detected, but not yet characterized.6 The allergens of major importance in SA are the muscle proteins TM and AK. TM, the major allergen with specific-IgE antibodies in ≤90% of SA patients, is associated with severe clinical reactivity. AK is a pan-allergen with cross-reactivity with crustaceans and cephalopods.

    Practical implementation of a quantum backtracking algorithm

    Full text link
    In previous work, Montanaro presented a method to obtain quantum speedups for backtracking algorithms, a general meta-algorithm to solve constraint satisfaction problems (CSPs). In this work, we derive a space efficient implementation of this method. Assume that we want to solve a CSP with mm constraints on nn variables and that the union of the domains in which these variables take their value is of cardinality dd. Then, we show that the implementation of Montanaro's backtracking algorithm can be done by using O(nlogd)O(n \log d) data qubits. We detail an implementation of the predicate associated to the CSP with an additional register of O(logm)O(\log m) qubits. We explicit our implementation for graph coloring and SAT problems, and present simulation results. Finally, we discuss the impact of the usage of static and dynamic variable ordering heuristics in the quantum setting.Comment: 18 pages, 10 figure

    Multicenter prevalence of anaphylaxis in clinic-based oral food challenges

    Get PDF
    Background Although previous single-center studies report the rate of anaphylaxis for oral food challenges (OFCs) as 9% to 11%, little is known regarding the epidemiology of clinical OFCs across multiple centers in the United States. Objective To examine the epidemiology, symptoms, and treatment of clinical low-risk OFCs in the nonresearch setting. Methods Data were obtained from 2008 to 2013 through a physician survey in 5 food allergy centers geographically distributed across the United States. Allergic reaction rates and the association of reaction rates with year, hospital, and demographics were determined using a linear mixed model. Meta-analysis was used to pool the proportion of reactions and anaphylaxis with inverse-variance weights using a random-effects model with exact confidence intervals (CIs). Results A total of 6,377 OFCs were performed, and the pooled estimate of anaphylaxis was 2% (95% CI, 1%-3%). The rate of allergic reactions was 14% (95% CI, 13%-16%) and was consistent during the study period (P = .40). Reaction rates ranged from 13% to 33%. Males reacted 16% more frequently than females (95% CI, 4%-37.5%; P = .04). Foods challenged in 2013 varied geographically, with peanut as the most challenged food in the Northeast, Midwest, and West and egg as the most challenged in the South. Conclusion As the largest national survey of allergic reactions of clinical open OFCs in a nonresearch setting in the United States, this study found that performing clinical nonresearch open low-risk OFCs results in few allergic reactions, with 86% of challenges resulting in no reactions and 98% without anaphylaxis

    AACP Special Taskforce White Paper on Diversifying Our Investment in Human Capital

    Get PDF
    The 2015-2017 American Association of Colleges of Pharmacy (AACP) Special Taskforce on Diversifying our Investment in Human Capital was appointed for a two-year term, due to the rigors and complexities of its charges. This report serves as a white paper for academic pharmacy on diversifying our investment in human capital. The Taskforce developed and recommended a representation statement that was adapted and adopted by the AACP House of Delegates at the 2016 AACP Annual Meeting. In addition, the Taskforce developed a diversity statement for the Association that was adopted by the AACP Board of Directors in 2017. The Taskforce also provides recommendations to AACP and to academic pharmacy in this white paper

    Academic team formation as evolving hypergraphs

    Get PDF
    This paper quantitatively explores the social and socio-semantic patterns of constitution of academic collaboration teams. To this end, we broadly underline two critical features of social networks of knowledge-based collaboration: first, they essentially consist of group-level interactions which call for team-centered approaches. Formally, this induces the use of hypergraphs and n-adic interactions, rather than traditional dyadic frameworks of interaction such as graphs, binding only pairs of agents. Second, we advocate the joint consideration of structural and semantic features, as collaborations are allegedly constrained by both of them. Considering these provisions, we propose a framework which principally enables us to empirically test a series of hypotheses related to academic team formation patterns. In particular, we exhibit and characterize the influence of an implicit group structure driving recurrent team formation processes. On the whole, innovative production does not appear to be correlated with more original teams, while a polarization appears between groups composed of experts only or non-experts only, altogether corresponding to collectives with a high rate of repeated interactions

    Rapid in vivo measurement of B-amyloid reveals biphasic clearance kinetics in an Alzheimer\u27s mouse model

    Get PDF
    Accumulation of ?-amyloid peptide is a key step in Alzheimer?s disease pathogenesis. Yuede et al. propose a novel method to track ?-amyloid levels in vivo

    Preclinical and clinical biomarker studies of CT1812:A novel approach to Alzheimer's disease modification

    Get PDF
    INTRODUCTION: Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer’s disease (AD) patients’ brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812’s effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812’s impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS: Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APP(Swe)/PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPP(Swe/Lnd+) and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18–26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS: CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION: These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812

    Glucokinase (GCK) Mutations and Their Characterization in MODY2 Children of Southern Italy

    Get PDF
    Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2
    corecore