3 research outputs found

    Quinoa phenotyping methodologies: An international consensus

    Get PDF
    Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.Fil: Stanschewski, Clara S.. King Abdullah University of Science and Technology; Arabia SauditaFil: Rey, Elodie. King Abdullah University of Science and Technology; Arabia SauditaFil: Fiene, Gabriele. King Abdullah University of Science and Technology; Arabia SauditaFil: Craine, Evan B.. Washington State University; Estados UnidosFil: Wellman, Gordon. King Abdullah University of Science and Technology; Arabia SauditaFil: Melino, Vanessa J.. King Abdullah University of Science and Technology; Arabia SauditaFil: Patiranage, Dilan S. R.. King Abdullah University of Science and Technology; Arabia SauditaFil: Johansen, Kasper. King Abdullah University of Science and Technology; Arabia SauditaFil: Schmöckel, Sandra M.. King Abdullah University of Science and Technology; Arabia SauditaFil: Bertero, Hector Daniel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Oakey, Helena. University of Adelaide; AustraliaFil: Colque Little, Carla. Universidad de Copenhagen; DinamarcaFil: Afzal, Irfan. University of Agriculture; PakistánFil: Raubach, Sebastian. The James Hutton Institute; Reino UnidoFil: Miller, Nathan. University of Wisconsin; Estados UnidosFil: Streich, Jared. Oak Ridge National Laboratory; Estados UnidosFil: Amby, Daniel Buchvaldt. Universidad de Copenhagen; DinamarcaFil: Emrani, Nazgol. Christian-albrechts-universität Zu Kiel; AlemaniaFil: Warmington, Mark. Agriculture And Food; AustraliaFil: Mousa, Magdi A. A.. Assiut University; Arabia Saudita. King Abdullah University of Science and Technology; Arabia SauditaFil: Wu, David. Shanxi Jiaqi Agri-Tech Co.; ChinaFil: Jacobson, Daniel. Oak Ridge National Laboratory; Estados UnidosFil: Andreasen, Christian. Universidad de Copenhagen; DinamarcaFil: Jung, Christian. Christian-albrechts-universität Zu Kiel; AlemaniaFil: Murphy, Kevin. Washington State University; Estados UnidosFil: Bazile, Didier. Savoirs, Environnement, Sociétés; Francia. Universite Paul-valery Montpellier Iii; FranciaFil: Tester, Mark. King Abdullah University of Science and Technology; Arabia Saudit

    A Review of Chenopodium quinoa (Willd.) Diseases—An Updated Perspective

    No full text
    The journey of the Andean crop quinoa (Chenopodium quinoa Willd.) to unfamiliar environments and the combination of higher temperatures, sudden changes in weather, intense precipitation, and reduced water in the soil has increased the risk of observing new and emerging diseases associated with this crop. Several diseases of quinoa have been reported in the last decade. These include Ascochyta caulina, Cercospora cf. chenopodii, Colletotrichum nigrum, C. truncatum, and Pseudomonas syringae. The taxonomy of other diseases remains unclear or is characterized primarily at the genus level. Symptoms, microscopy, and pathogenicity, supported by molecular tools, constitute accurate plant disease diagnostics in the 21st century. Scientists and farmers will benefit from an update on the phytopathological research regarding a crop that has been neglected for many years. This review aims to compile the existing information and make accurate associations between specific symptoms and causal agents of disease. In addition, we place an emphasis on downy mildew and its phenotyping, as it continues to be the most economically important and studied disease affecting quinoa worldwide. The information herein will allow for the appropriate execution of breeding programs and control measures
    corecore