21 research outputs found

    In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Get PDF
    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.L.L.P. acknowledges funding from Area di Ricerca Scientifica e Tecnologica of Trieste and from MIUR through Progetto Strategico NFFA. C.A. acknowledges support from CNR through the ESF FANAS project NOMCIS. C.A. and C.C. acknowledge financial support from MIUR (PRIN 2010-2011 nº 2010N3T9M4). S.B. acknowledges funding from ICTP TRIL program. S.H. acknowledges funding from ERC grant InsituNANO (n°279342). R.S.W. acknowledges funding from EPSRC (Doctoral training award), and the Nano Science & Technology Doctoral Training Centre Cambridge (NanoDTC). The help of C. Dri and F. Esch (design) and P. Bertoch and F. Salvador (manufacturing) in the realization of the high temperature STM sample holder is gratefully acknowledged. We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn402927q

    A competitive amino-carboxylic hydrogen bond on a gold surface

    No full text
    An amino-carboxylic motif is identified as a novel synthon in the formation of 2D hetero-organic architectures at surfaces. The well-defined interacting scheme we describe herein represents an ideal prototypical system for further investigation of the interaction at surfaces of the two functional groups

    From Vanadia Nanoclusters to Ultrathin Films on TiO2(110): Evolution of the Yield and Selectivity in the Ethanol Oxidation Reaction

    No full text
    Oxide-on-oxide systems are becoming increasingly important in nanocatalysis and surface engineering, because of the creation of hybridized interfaces holding high reactivity and selectivity toward oxidation reactions. Here we report on the results of a multitechnique surface science study conducted on an oxide/oxide model system. By depositing increasing amounts of vanadium oxide (VOx) on a titanium dioxide-rutile(110) substrate, we were able to follow the morphology and oxidation state of the overlayer. Three growth modes were detected: nanoclusters at low coverage (0.3 and 0.5 monolayer), one-dimensional strands aligned along the substrate [001] direction at monolayer coverage, and three-dimensional nanoislands at higher coverage (2.0 and 5.0 monolayers). All these structures share the same oxidation state (V2O3). We studied the reactivity and selectivity of these model catalysts toward partial oxidation of ethanol, finding that both of them depend on the VOx thickness. Nanoclusters can yield acetaldehyde through low-temperature oxidative dehydrogenation but show a scarce selectivity in the investigated temperature range. The monolayer coverage is the most reactive toward ethanol dehydration to ethylene, showing also good selectivity. Similar results are found at high coverage, although the overall reactivity of the systems toward alcohol oxidation decreases

    Growth of p- and n-dopable films from electrochemically generated C-60 cations

    No full text
    The formidable electron-acceptor properties Of C-60 contrast with its difficult oxidations. Only recently it has become possible to achieve reversibility of more than one electrochemical anodic process versus the six reversible cathodic reductions. Here we exploit the reactivity of electrochemical oxidations of pure C-60 to grow a film of high thermal and mechanical stability on the anode. The new material differs remarkably from its precursor since it conducts both electrons and holes. Its growth and properties are consistently characterized by a host of techniques that include atomic force microscopy (AFM), Raman and infrared spectroscopies, X-ray-photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), scanning electron microscopy and energy-dispersive X-ray analysis (SEM-EDX), matrix-assisted laser desorption/ionization (MALDI), and a variety of electrochemical measurements

    Room Temperature Metalation of 2H-TPP Monolayer on Iron and Nickel Surfaces by Picking up Substrate Metal Atoms

    No full text
    Here, it is demonstrated, using high-resolution X-ray spectroscopy and density functional theory calculations, that 2<i>H</i>-tetraphenyl porphyrins metalate at room temperature by incorporating a surface metal atom when a (sub)monolayer is deposited on 3d magnetic substrates, such as Fe(110) and Ni(111). The calculations demonstrate that the redox metalation reaction would be exothermic when occurring on a Ni(111) substrate with an energy gain of 0.89 eV upon embedding a Ni adatom in the macrocycle. This is a novel way to form, <i>via</i> chemical modification and supramolecular engineering, 3d-metal–organic networks on magnetic substrates with an intimate bond between the macrocycle molecular metal ion and the substrate atoms. The achievement of a complete metalation by Fe and Ni can be regarded as a test case for successful preparation of spintronic devices by means of molecular-based magnets and inorganic magnetic substrates

    Polymerization effects and localized electronic states in condensed-phase eumelanin

    No full text
    The electronic structure of eumelanin thin films has been investigated by means of x-ray absorption and photoemission spectroscopies. The main features of the experimental data are interpreted on the basis of density-functional calculations for the isolated monomers participating to the eumelanin macromolecule. In order to single out the polymerization effects, we followed a bottom-up scaling approach to establish the minimum supramolecular level of organization that can provide a consistent spectroscopical picture of an altogether complex and highly disordered system. A tetramer macrocycle, made by three hydroquinones and one indolequinone, is found to reproduce the observed polymerization effects at the N K edge, while preserving the experimental spectral weight among the different monomers. This tetramer is different from that predicted for the synthesis from isolated monomers, providing an experimental evidence of the role of the reaction path on the stabilization of macrocycles in condensed-phase eumelanin

    Chemistry of the Methylamine Termination at a Gold Surface: From Autorecognition to Condensation

    No full text
    13The self-assembly of the naphthylmethylamine molecules (NMA) on the Au(111) surface is investigated by a combined experimental and theoretical approach. Three well-defined phases are observed upon different thermal treatments at the monolayer stage. The role played by the methylamine termination is evidenced in both the molecule–molecule and molecule–substrate interactions. The autorecognition process of the amino groups is identified as the driving factor for the formation of a complex hydrogen bonding scheme in small molecular clusters, possibly acting also as a precursor of a denitrogenation condensation process induced by thermal annealing.reservedmixedDri, Carlo; Fronzoni, Giovanna; Balducci, Gabriele; Furlan, Sara; Stener, Mauro; Feng, Zhijing; Comelli, Giovanni; Castellarin-Cudia, Carla; Cvetko, Dean; Kladnik, Gregor; Verdini, Alberto; Floreano, Luca; Cossaro, AlbanoDri, Carlo; Fronzoni, Giovanna; Balducci, Gabriele; Furlan, Sara; Stener, Mauro; Feng, Zhijing; Comelli, Giovanni; Castellarin Cudia, Carla; Cvetko, Dean; Kladnik, Gregor; Verdini, Alberto; Floreano, Luca; Cossaro, Alban

    <i>In Situ</i> Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth

    No full text
    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed <i>via</i> complementary <i>in situ</i> scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni<sub>2</sub>C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) <i>via</i> replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes

    <i>In Situ</i> Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth

    No full text
    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed <i>via</i> complementary <i>in situ</i> scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni<sub>2</sub>C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) <i>via</i> replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes
    corecore