27 research outputs found
MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer
: Colorectal cancer (CRC) is one of the most common malignant tumors worldwide and understanding its underlying molecular mechanisms is crucial for the development of therapeutic strategies. The mitogen-activated protein kinase-kinase 3 (MKK3) is a specific activator of p38 MAP kinases (p38 MAPKs), which contributes to the regulation of several cellular functions, such as proliferation, differentiation, apoptosis as well as response to drugs. At present, the exact MKK3/p38 MAPK pathway contribution in cancer is heavily debated because of its pleiotropic function. In this work, we retrospectively explored the prognostic and pathobiologic relevance of MKK3 in a cohort of CRC patients and assessed MKK3 molecular functions in a panel of CRC lines and colonocytes primary cultures. We found increased MKK3 levels in late-stage CRC patients which correlated with shorter overall survival. Herein, we report that the MKK3 targeting by inducible RNA interference univocally exerts antitumor effects in CRC lines but not in primary colonocytes. While MKK3 depletion per se affects growth and survival by induction of sustained autophagy and death in some CRC lines, it potentiates response to chemotherapeutic drug 5-fluorouracil (5-FU) in all of the tested CRC lines in vitro. Here, we demonstrate for the first time that in CRC the MKK3 specifically activates p38delta MAPK isoform to sustain prosurvival signaling and that such effect is exacerbated upon 5-FU challenge. Indeed, p38delta MAPK silencing recapitulates MKK3 depletion effects in CRC cells in vitro and in vivo. Overall, our data identified a molecular mechanism through which MKK3 supports proliferation and survival signaling in CRC, further supporting MKK3 as a novel and extremely attractive therapeutic target for the development of promising strategies for the management of CRC patients
JAK/Stat5-mediated subtype-specific lymphocyte antigen 6 complex, locus G6D (LY6G6D) expression drives mismatch repair proficient colorectal cancer
Human microsatellite-stable (MSS) colorectal cancers (CRCs) are immunologically "cold" tumour subtypes characterized by reduced immune cytotoxicity. The molecular linkages between immune-resistance and human MSS CRC is not clear
Role of gonadotropin-releasing hormone analogues in metastatic male breast cancer: Results from a pooled analysis
Background: Male breast cancer is a rare malignancy. Despite the lack of prospectively generated data from trials in either the adjuvant or metastatic setting, patients are commonly treated with hormone therapies. Much controversy exists over the use of gonadotropin-releasing hormone analogues in metastatic male breast cancer patients. We conducted this study to provide more concrete ground on the use of gonadotropin-releasing hormone analogues in this setting. Methods: We herein present results from a pooled analysis including 60 metastatic male breast cancer patients treated with either an aromatase inhibitor or cyproterone acetate as a monotherapy (23 patients) or combined with a gonadotropin-releasing hormone analogue (37 patients). Results: Overall response rate was 43.5 % in patients treated with monotherapy and 51.3 % with combination therapy (p = 0.6). Survival outcomes favored combination therapy in terms of median progression-free survival (11.6 months versus 6 months; p = 0.05), 1-year progression-free survival rate (43.2 % versus 21.7 %; p = 0.05), median overall survival (29.7 months versus 22 months; p = 0.05), and 2-year survival rate (64.9 % versus 43.5 %; p = 0.05). Conclusions: In metastatic male breast cancer patients, the combined use of gonadotropin-releasing hormone analogues and aromatase inhibitors or antiandrogens seems to be associated with greater efficacy, particularly in terms of survival outcomes, compared with monotherapy. Collectively, these results encourage considering these agents in the metastatic setting
DNA damage repair and survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy
The DNA damage response (DDR) network is exploited by cancer cells to withstand chemotherapy. Gastric cancer (GC) carries deregulation of the DDR and harbors genetic defects that fuel its activation. The ATM-Chk2 and ATR-Chk1-Wee1 axes are deputed to initiate DNA repair. Overactivation of these pathways in cancer cells may represent an adaptive response for compensating genetic defects deregulating G1 -S transition (e.g., TP53) and ATM/ATR-initiated DNA repair (e.g., ARID1A). We hypothesized that DDR-linked biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Immunohistochemical assessment of DDR kinases (pATM, pChk2, pChk1 and pWee1) and DNA damage markers (\u3b3-H2AX and pRPA32) was performed in biological samples from 110 advanced GC patients treated with first-line chemotherapy, either in phase II trials or in routine clinical practice. In 90 patients, this characterization was integrated with targeted ultra-deep sequencing for evaluating the mutational status of TP53 and ARID1A. We recorded a positive association between the investigated biomarkers. The combination of two biomarkers (\u3b3-H2AXhigh /pATMhigh ) was an adverse factor for both progression-free survival (multivariate Cox: HR 2.23, 95%CI: 1.47-3.40) and overall survival (multivariate Cox: HR: 2.07, 95%CI: 1.20-3.58). The relationship between the \u3b3-H2AXhigh /pATMhigh model and progression-free survival was consistent across the different TP53 backgrounds and was maintained in the ARID1A wild-type setting. Conversely, this association was no longer observed in an ARID1A-mutated subgroup. The \u3b3-H2AXhigh /pATMhigh model negatively impacted survival outcomes in GC patients treated with chemotherapy. The mutational status of ARID1A, but apparently not TP53 mutations, affects its predictive significanc
DNA damage repair and survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy
The DNA damage response (DDR) network is exploited by cancer cells to withstand chemotherapy. Gastric cancer (GC) carries deregulation of the DDR and harbors genetic defects that fuel its activation. The ATM-Chk2 and ATR-Chk1-Wee1 axes are deputed to initiate DNA repair. Overactivation of these pathways in cancer cells may represent an adaptive response for compensating genetic defects deregulating G1-S transition (e.g., TP53) and ATM/ATR-initiated DNA repair (e.g., ARID1A). We hypothesized that DDR-linked biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Immunohistochemical assessment of DDR kinases (pATM, pChk2, pChk1 and pWee1) and DNA damage markers (\uce\ub3-H2AX and pRPA32) was performed in biological samples from 110 advanced GC patients treated with first-line chemotherapy, either in phase II trials or in routine clinical practice. In 90 patients, this characterization was integrated with targeted ultra-deep sequencing for evaluating the mutational status of TP53 and ARID1A. We recorded a positive association between the investigated biomarkers. The combination of two biomarkers (\uce\ub3-H2AXhigh/pATMhigh) was an adverse factor for both progression-free survival (multivariate Cox: HR 2.23, 95%CI: 1.47\ue2\u80\u933.40) and overall survival (multivariate Cox: HR: 2.07, 95%CI: 1.20\ue2\u80\u933.58). The relationship between the \uce\ub3-H2AXhigh/pATMhigh model and progression-free survival was consistent across the different TP53 backgrounds and was maintained in the ARID1A wild-type setting. Conversely, this association was no longer observed in an ARID1A-mutated subgroup. The \uce\ub3-H2AXhigh/pATMhigh model negatively impacted survival outcomes in GC patients treated with chemotherapy. The mutational status of ARID1A, but apparently not TP53 mutations, affects its predictive significance
Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy
Background: An extensive crosstalk co-regulates the Hippo and Wnt pathway. Preclinical studies revealed that the Hippo transducers YAP/TAZ mediate a number of oncogenic functions in gastric cancer (GC). Moreover, comprehensive characterization of GC demonstrated that the Wnt pathway is targeted by oncogenic mutations. On this ground, we hypothesized that YAP/TAZ- and Wnt-related biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Methods: In the present study, we included 86 patients with advanced GC treated with first-line chemotherapy in prospective phase II trials or in routine clinical practice. Tissue samples were immunostained to evaluate the expression of YAP/TAZ. Mutational status of key Wnt pathway genes (CTNNB1, APC and FBXW7) was assessed by targeted DNA next-generation sequencing (NGS). Survival curves were estimated and compared by the Kaplan-Meier product-limit method and the log-rank test, respectively. Variables potentially affecting progression-free survival (PFS) were verified in univariate Cox proportional hazard models. The final multivariate Cox models were obtained with variables testing significant at the univariate analysis, and by adjusting for all plausible predictors of the outcome of interest (PFS). Results: We observed a significant association between TAZ expression and Wnt mutations (Chi-squared p = 0.008). Combined TAZ expression and Wnt mutations (TAZpos/WNTmut) was more frequently observed in patients with the shortest progression-free survival (negative outliers) (Fisher p = 0.021). Uni-and multivariate Cox regression analyses revealed that patients whose tumors harbored the TAZpos/WNTmutsignature had an increased risk of disease progression (univariate Cox: HR 2.27, 95% CI 1.27-4.05, p = 0.006; multivariate Cox: HR 2.73, 95% CI 1.41-5.29, p = 0.003). Finally, the TAZpos/WNTmutsignature negatively impacted overall survival. Conclusions: Collectively, our findings indicate that the oncogenic YAP/TAZ-Wnt crosstalk may be active in GC, conferring chemoresistant traits that translate into adverse survival outcomes
Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy
Background: An extensive crosstalk co-regulates the Hippo and Wnt pathway. Preclinical studies revealed that the Hippo transducers YAP/TAZ mediate a number of oncogenic functions in gastric cancer (GC). Moreover, comprehensive characterization of GC demonstrated that the Wnt pathway is targeted by oncogenic mutations. On this ground, we hypothesized that YAP/TAZ- and Wnt-related biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Methods: In the present study, we included 86 patients with advanced GC treated with first-line chemotherapy in prospective phase II trials or in routine clinical practice. Tissue samples were immunostained to evaluate the expression of YAP/TAZ. Mutational status of key Wnt pathway genes (CTNNB1, APC and FBXW7) was assessed by targeted DNA next-generation sequencing (NGS). Survival curves were estimated and compared by the Kaplan-Meier product-limit method and the log-rank test, respectively. Variables potentially affecting progression-free survival (PFS) were verified in univariate Cox proportional hazard models. The final multivariate Cox models were obtained with variables testing significant at the univariate analysis, and by adjusting for all plausible predictors of the outcome of interest (PFS). Results: We observed a significant association between TAZ expression and Wnt mutations (Chi-squared p = 0.008). Combined TAZ expression and Wnt mutations (TAZ pos /WNT mut ) was more frequently observed in patients with the shortest progression-free survival (negative outliers) (Fisher p = 0.021). Uni-and multivariate Cox regression analyses revealed that patients whose tumors harbored the TAZ pos /WNT mut signature had an increased risk of disease progression (univariate Cox: HR 2.27, 95% CI 1.27-4.05, p = 0.006; multivariate Cox: HR 2.73, 95% CI 1.41-5.29, p = 0.003). Finally, the TAZ pos /WNT mut signature negatively impacted overall survival. Conclusions: Collectively, our findings indicate that the oncogenic YAP/TAZ-Wnt crosstalk may be active in GC, conferring chemoresistant traits that translate into adverse survival outcomes
Cancer stem cells: are they responsible for treatment failure?
Overcoming resistance to standard anticancer treatments represents a signi cant challenge. The interest regarding cancer stem cells, a cellular population that has the ability to self-renew and to propagate the tumor, was prompted by experimental evidence delineating the molecular mechanisms that are selectively activated in this cellular subset in order to survive chemotherapy. This has also stimulated combination strategies aimed at rendering cancer stem cells vulnerable to anticancer agents. Moreover, cancer stem cells o er a unique opportunity for modeling human cancers in mice, thus emerging as a powerful tool for testing novel drugs and combinations in a simulation of human disease. These novel animal models may lay the foundation for a new generation of clinical trials aimed at anticipating the bene t to patients of anticancer therapies
Cancer stem cells: Are they responsible for treatment failure?
Overcoming resistance to standard anticancer treatments represents a significant challenge. The interest regarding cancer stem cells, a cellular population that has the ability to self-renew and to propagate the tumor, was prompted by experimental evidence delineating the molecular mechanisms that are selectively activated in this cellular subset in order to survive chemotherapy. This has also stimulated combination strategies aimed at rendering cancer stem cells vulnerable to anticancer agents. Moreover, cancer stem cells offer a unique opportunity for modeling human cancers in mice, thus emerging as a powerful tool for testing novel drugs and combinations in a simulation of human disease. These novel animal models may lay the foundation for a new generation of clinical trials aimed at anticipating the benefit to patients of anticancer therapies