203 research outputs found

    Carbon Nanotubes-Based Radiation Detectors

    Get PDF
    Communications engineering / telecommunication

    Ultrahigh Energy Cosmic Rays Detection

    Get PDF
    The paper describes methods used for the detection of cosmic rays with energies above 10^18 eV (UHECR, UltraHigh Energy Cosmic Rays). It had been anticipated there would be a cutoff in the energy spectrum of primary cosmic rays around 3 10^19 eV induced by their interaction with the 2.7 K primordial photons. This has become known as the GZK cutoff. However, several showers have been detected with estimated primary energy exceeding this limit.Comment: 4 pages, 4 figures. To appear in the proceedings of 17th Conference on High Energy Physics (IFAE 2005) (In Italian), Catania, Italy, 30 Mar - 2 Apr 200

    The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operate at the CTA sites with the goal of making a first survey of the aerosol conditions of the selected site and to use it as a calibrated benchmark for the other Lidars that will be installed on site. It is proposed for CTA that the ARCADE Lidar will be first upgraded in Italy and then tested in parallel to a Lidar of the EARLINET network in L'Aquila. Upgrades include the addition of the water vapour Raman channel to the receiver and the use of new and better performing electronics. It is proposed that the upgraded system will travel to and characterize both CTA sites, starting from the first selected site in 2016

    The analog signal processing board for the HEAT telescopes

    Get PDF
    Abstract The aim of the Pierre Auger Observatory is to measure with high statistics the flux, the arrival directions and the mass composition of cosmic rays at the highest energies. Since 2009, the Auger Collaboration has added three new High Elevation Auger Telescopes (HEAT) along with a new 25 km 2 infill array in the field of view of the new telescopes. These enhancements have lowered the energy threshold of the Observatory by about an order of magnitude. In combination with the existing telescopes in Coihueco the vertical field of view is extended to about 60°, allowing the measurement of nearby air showers arising from primaries with energies as low as 2×10 17 eV. In this paper we describe the new front-end analog board developed to process the signals generated by the photomultipliers of the HEAT telescopes. Eighty analog boards have been produced, fully characterized and tested. The main characteristics of the electronic circuits and the circuit parameters are illustrated

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore