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The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy

gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere.

The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the

measured Cherenkov yield in several ways: the air-shower development itself, the variation of the

Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov

light out of the camera field-of-view and the scattering of photons into the camera. In this sce-

nario, aerosols are the most variable atmospheric component in time and space and therefore need

a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to

measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact

and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently

taking data in Lamar, Colorado. The ARCADE Lidar is proposedto operate at the CTA sites with

the goal of making a first survey of the aerosol conditions of the selected site and to use it as a

calibrated benchmark for the other Lidars that will be installed on site. It is proposed for CTA

that the ARCADE Lidar will be first upgraded in Italy and then tested in parallel to a Lidar of

the EARLINET network in L’Aquila. Upgrades include the addition of the water vapour Raman

channel to the receiver and the use of new and better performing electronics. It is proposed that

the upgraded system will travel to and characterize both CTAsites, starting from the first selected

site in 2016.
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1. Introduction

The Cherenkov Telescope Array (CTA) will be the next generation of very high energy gamma-
rays telescopes based on Imaging Astronomical Cherenkov Telescopes (IACTs). The observatory
will consist of two arrays of telescopes, one in the Northernand one in the Southern hemisphere to
cover the full sky, each composed by several tens of IACTs of different size (Small Size Telescope
- SST, Medium Size Telescope - MST, Large Size Telescope - LST) to span a wide energy range
going from a few tens of GeV up to more than 100 TeV. The observatory will reach an unprece-
dented sensitivity, angular and energy resolution with respect to any of the existing gamma-rays
observatories.

Figure 1: Sketch of a possible CTA site

The telescopes will observe the Cherenkov light emitted by the electromagnetic showers gen-
erated in the atmosphere due to the interaction of primary gamma rays with the atmosphere. The
analysis of the showers images on different telescopes allows the reconstruction of the primary
particle energy and direction. The atmosphere therefore plays a double role, being responsible
for both the production and the attenuation of the Cherenkovlight from the point of emission to
the telescopes. Nowadays, VHE gamma ray experiments include instruments to measure the at-
mospheric transparency however mainly use their data to identify good quality observations time
slots rather than to correct data, even if some preliminary study is being done in this direction
[1, 2, 3, 4, 5]. In the CTA, to ensure high quality data for the observatory, a continuous charac-
terization of the local optical properties of the atmosphere during data taking will be performed to
correct data [6]. Studies conducted using Monte Carlo simulations of the Magic telescopes proved
the need for height-dependence aerosol attenuation measurements to correct IACT data [7]: in case
of aerosol over-density located close to the ground, the energy correction can be precisely obtained
from the total transmission, otherwise altitude-resolving instruments providing local aerosol at-
tenuation profiles are needed. For this reason, the CTA comprises a multi-instrument atmospheric
monitoring system [8] that will include Raman Lidars to measure the aerosol attenuation properties
of the atmosphere, i.e. vertical aerosol optical depth profiles [10]. Briefly, the scattering of light by
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aerosols and molecules in the atmosphere can be divided intotwo general types: elastic scattering
on both molecules and aerosols (in this case the wavelength of the scattered photon is the same
of that of the laser source), and inelastic Raman scatteringon a specific molecule (in this case the
wavelength of the backscattered light is shifted). The intensity of the inelastic component of the
backscattered light is significantly lower (∼ 3 orders of magnitude) than the intensity of the elasti-
cally scattered light. The analysis of the backscattered light allows to infer the aerosol attenuation
conditions of the atmosphere above the observation point.

The ARCADE Lidar, a Raman Lidar system built in Italy for the Atmospheric Research for
Climate and Astroparticle DEtection project [9, 11, 12] andcurrently operating in Colorado, USA,
will be used to perform a first survey of the aerosol conditions on both CTA selected sites and as a
benchmark to the other Raman Lidar systems that are scheduled to be running on site.

Figure 2: The ARCADE Lidar system in Lamar, Colorado

2. The ARCADE Raman Lidar

The ARCADE Raman Lidar has been built at the University of Torino / INFN mechanical
workshop of Torino in collaboration with the University of Naples / INFN Napoli within the FIRB
2010 grant funded by the MIUR (Italian Ministry for Research), a 3 years project started in March
2012 aiming to characterize the optical properties of the atmosphere, in particular measuring the
aerosol attenuation profiles of UV light, for ground and space based cosmic rays experiments with
the typical techniques used in this field : side-scattering measurements using distant laser facilities
and elastic / Raman lidars [13]. Data have been collected in Lamar, Colorado, since June 2014. The
location was chosen for the arid-desertic environment, similar to typical cosmic rays experiments
sites. It is a stand-alone atmospheric monitoring device not integrated in any ongoing experiment,
therefore there has been no limitation on the data taking, allowing to compare for the first time the
different techniques simultaneously on the same air mass with a good statistics. The ARCADE
project has currently ended data taking and data analysis has just started. The details of the project
can be found elsewhere in these proceedings [12].
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The ARCADE Raman Lidar has been built to be very compact to ensure portability and a good
stability of the mechanical structure to keep the alignmentof the mirror with the laser beam and
optics. For this reason, the laser bench and the receiver areall assembled together and move at the
same time on the zenith axis from 0 to 90 degrees. This reducespossible misalignments and makes
all the system easily portable. The computers and electronics are housed inside a 20 feet shipping
container while the lidar is positioned on top of the container inside an astronomical dome that can
be remotely operated, as the whole system. The system has been installed in Colorado during June
2014 and data have been collected for one year.

The ARCADE lidar is able to separate the elastic (355 nm) and nitrogen (387 nm) backscat-
tered Raman components of the returning signal and to process them separately. Analysis methods
that can be performed with the present configuration are the multi-angle analysis applied to the
elastic traces and the Raman analysis on vertical and inclined shots, as described in [14].

The actual design of the ARCADE lidar includes a laser bench,an optical receiver and a mount
for zenith steering in a very compact assembly. A sketch of the laser bench is shown in figure 3.

A
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C

Figure 3: The design of the laser bench. A : the laser; B : high purity 4 dichroics module; C : fifth dichroic;
D : 95/5 beam splitter; E : pyroelectric probe; F : 10X beam expander; G : depolarizer; H : motorized
remotely controllable mirror.

The laser source is a Quantel Centurion Nd:YAG firing at the maximum energy of 6 mJ at the
third harmonic (355 nm). The first two harmonics (1064 nm and 532 nm) are suppressed by 5 con-
secutive dichroic mirrors to ensure a good purity of the laser beam. The laser energy is constantly
monitored by means of a LaserProbe Inc. RjP-445 pyroelectric energy probe, which receives 5%
of the beam output; the remaining 95% is sent to a 10X beam expander that reduced the laser
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Figure 4: The ARCADE Lidar system. The black box includes the laser bench, primay mirror and receiver.
The steering mechanism is visible. The system is located inside the astronomical dome.

beam divergence down to 0.3 mrad and enlarges the spot diameter to≈ 20 mm. Before exiting the
laser box, the beam is depolarized : this is due to the need of ensuring an isotropic scattering of
the UV laser light in air, for the side-scattering measurements with a distant telescope in the AR-
CADE project. A two-axis motorized mirror mount, holding a 2” flat mirror, remotely controllable
by computer, allows fine adjustments of the output beam direction : this is useful to verify (and
adjust) the laser beam and mirror alignment for the lidar measurements. The backscattered light
is collected by a 25 cm diameter primary f/3 parabolic mirror. A flat secondary mirror sends the
light onto a lens that defocuses the light beam. The light is thus guided onto a beam splitter which
separates the elastic and N2 Raman backscatter photons. Theresulting elastic beam passes through
a 354.7 nm narrowband filter, while the Raman-shifted line from nitrogen ( R = 387 nm) is selected
by a second narrowband filter. The two beams are read by two separate R1332Q photomultiplier
tubes by Hamamatsu. Signals collected by the photomultipliers are then amplified and sampled
with a 10 bit 2 GS/s CAEN digitizer [15]. The parallax betweenthe laser beam and the receiver is
301 mm. A picture of the ARCADE lidar inside the astronomicaldome is shown in figure 4.

With this configuration, the system can scan the atmosphere in a range from 250 m to 10 km.
An example of one signal acquired by the Raman and elastic channel in presence of a cloud is
shown in picture 5.

Data analysis has just started. The analysis of both the Raman signals (vertical and inclined)
and of the elastic signals using the multiangle analysis will allow to measure the vertical aerosol
optical depth profiles and to verify the horizontal uniformity of the atmosphere.
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Figure 5: An example of a Raman and an elastic signals acquired by the ARCADE Lidar. A cloud is present
above the lidar: it appears as a bump in the elastic signal (top) and as a drop in the Raman one (bottom).

3. The planned upgrade

The ARCADE project has just ended and the lidar is planned to be shipped to the selected
CTA sites to perform a survey of the atmosperic aerosol conditions on site and to be used as a
benchmark for the first data acquisition of the other Lidar systems that will be operating on site.
The lidar is unmounted in Lamar, Colorado in July 2015 to be shipped back to Torino, Italy for
some optimization and upgrade before the transfer to the first CTA site.

The list of improvements will include :

• new photomultipliers that will substitute the old ones, recovered from a previous experiment;

• a new HV control system, more efficient and easily accessible(the present one is custom
made);

• a better insulation for the Lidar box (the Centurion laser suffers very low temperatures - a
fan heater controlled by a thermostat has been installed in the box during this winter, but it is
not sufficient to ensure the stability of the laser);

• add the water vapour Raman channel to the receiver. This includes the modification of the
receiver to host a third photomultiplier and the related filters.

The addition of a second Raman channel at 407 nm will improve the precision of the measure-
ments and will allow to obtain the water vapour profiles in atmosphere.
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The upgrade of the system will take place in Torino between September and December 2015.
At the beginning of 2016 the upgraded Lidar will be shipped toL’Aquila to operate for some time
in parallel with the Lidar of the DSFC / University of L’Aquila which is part of the EARLINET
network and can be used as a benchmark to test the performances of the new ARCADE lidar before
its shipment to the selected site, that is predicted to take place in the second half of 2016.

4. The role of ARCADE in the CTA

The ARCADE lidar will characterize both CTA sites. Presently it has not yet been defined
which of the finally selected Northern and Southern site it will start with. A possibility may be
the operation of the ARCADE lidar first at the Observatory delRoque de los Muchachos at La
Palma, in the Canary Islands, where the Magic telescopes arecurrenlty running and where the first
prototype of the Large Size Telescope for the CTA will be installed during 2016 together with other
Raman lidars under development.

The target of the ARCADE campaign in the CTA is to characterize the seasonal (or climatolog-
ical) aerosol content in the atmosphere over the site. ARCADE can measure the aerosol extinction
α(h) and volume backscatterβ (h) coefficients profiles, as well as the water vapour mixing ratio.
α(h) and β (h) can fully describe the optical properties of the aerosols (i.e. the vertical aerosol
optical depth and also a first guess of the aerosol scatteringproperties). The water vapour pro-
files, measured simultaneously to the aerosol attenuation profiles, can help to define the physical
properties of the aerosol particles. ARCADE has also steering capabilities from 0 to 90 degrees
: the possibility to sample the atmosphere in inclined direction and/or horizontally is useful to
investigate to which extent the atmosphere is horizontallyhomogeneous.
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