25 research outputs found

    The classifying algebra for defects

    Full text link
    We demonstrate that topological defects in a rational conformal field theory can be described by a classifying algebra for defects - a finite-dimensional semisimple unital commutative associative algebra whose irreducible representations give the defect transmission coefficients. We show in particular that the structure constants of the classifying algebra are traces of operators on spaces of conformal blocks and that the defect transmission coefficients determine the defect partition functions.Comment: 47 pages, several figures. v2: ref. [13] added; comparison of results with those of ref. [18] added (pages 15 and 34) v3: comment on the folding trick added at the end of section 2, typos correcte

    In-Situ Focusing Inside a Thermal Vacuum Chamber

    Get PDF
    Traditionally, infrared (IR) space instruments have been focused by iterating with a number of different thickness shim rings in a thermal vacuum chamber until the focus meets requirements. This has required a number of thermal cycles that are very expensive as they tie up many integration and test (I&T)/ environmental technicians/engi neers work ing three shifts for weeks. Rather than creating a test shim for each iteration, this innovation replaces the test shim and can focus the instrument while in the thermal vacuum chamber. The focus tool consists of three small, piezo-actuated motors that drive two sets of mechanical interface flanges between the instrument optics and the focal- plane assembly, and three optical-displacement metrology sensors that can be read from outside the thermal vacuum chamber. The motors are used to drive the focal planes to different focal distances and acquire images, from which it is possible to determine the best focus. At the best focus position, the three optical displacement metrology sensors are used to determine the shim thickness needed. After the instrument leaves the thermal vacuum chamber, the focus tool is replaced with the precision-ground shim ring. The focus tool consists of two sets of collars, one that mounts to the backside of the interface flange of the instrument optics, and one that mounts to the backside of the interface flange of the focal plane modules. The collars on the instrument optics side have the three small piezo-actuated motors and the three optical displacement metrology systems. Before the instrument is focused, there is no shim ring in place and, therefore, no fasteners holding the focal plane modules to the cameras. Two focus tooling collars are held together by three strong springs. The Orbiting Carbon Observatory (OCO) mission spectrometer was focused this way (see figure). The motor described here had to be moved five times to reach an acceptable focus, all during the same thermal cycle, which was verified using pupil slicing techniques. A focus accuracy of .20.100 microns was achieved

    Concurrent stone stabilization improves ultrasonic and pneumatic efficacy during cystolithopaxy: an in vitro analysis

    Full text link
    Objective To identify whether stabilization of larger bladder stones would improve the efficacy of combination (ultrasonic/pneumatic) lithotripsy in a phantom bladder stone model for percutaneous cystolithopaxy. Materials and Methods Using 1cm phantom Bego stones, a spherical model bladder was used to simulate percutaneous bladder access. A UroNet (US Endoscopy, USA) was placed alongside a Swiss Lithoclast probe through the working channel of a Storz 26Fr rigid nephroscope. Using a 30Fr working sheath, the stone was captured, and fragmented for 60seconds. Resulting fragments and irrigation were filtered through a 1mm strainer, and recorded. Five trials were performed with and without the UN. Durability was then assessed by measuring net defects, and residual grasp strength of each instrument. Descriptive statistics (mean, standard deviations) were used to summarize the data, and Student’s t-tests (alpha<0.05) were used to compare trials. Results The mean time to stone capture was 12s (8-45s). After fragmentation with UN stabilization, there were significant improvements in the amount of residual stone (22% dry weight reduction vs 8.1% without UN, p<0.001), number of fragments (17.5 vs 5.0 frag/stone, p=0.0029), and fragment size (3.6mm vs. 7.05 mm, p=0.035). Mesh defects were noted in all nets, ranging from 2-14 mm, though all but one net retained their original grip strength (36.8N). Conclusions Bladder stone stabilization improved fragmentation when used in conjunction with ultrasonic/pneumatic lithotripsy. However, due to limitations in maneuverability and durability of the UN, other tools need to identified for this indication

    Concurrent stone stabilization improves ultrasonic and pneumatic efficacy during cystolithopaxy: an in vitro analysis

    No full text
    Objective To identify whether stabilization of larger bladder stones would improve the efficacy of combination (ultrasonic/pneumatic) lithotripsy in a phantom bladder stone model for percutaneous cystolithopaxy. Materials and Methods Using 1cm phantom Bego stones, a spherical model bladder was used to simulate percutaneous bladder access. A UroNet (US Endoscopy, USA) was placed alongside a Swiss Lithoclast probe through the working channel of a Storz 26Fr rigid nephroscope. Using a 30Fr working sheath, the stone was captured, and fragmented for 60seconds. Resulting fragments and irrigation were filtered through a 1mm strainer, and recorded. Five trials were performed with and without the UN. Durability was then assessed by measuring net defects, and residual grasp strength of each instrument. Descriptive statistics (mean, standard deviations) were used to summarize the data, and Student’s t-tests (alpha<0.05) were used to compare trials. Results The mean time to stone capture was 12s (8-45s). After fragmentation with UN stabilization, there were significant improvements in the amount of residual stone (22% dry weight reduction vs 8.1% without UN, p<0.001), number of fragments (17.5 vs 5.0 frag/stone, p=0.0029), and fragment size (3.6mm vs. 7.05 mm, p=0.035). Mesh defects were noted in all nets, ranging from 2-14 mm, though all but one net retained their original grip strength (36.8N). Conclusions Bladder stone stabilization improved fragmentation when used in conjunction with ultrasonic/pneumatic lithotripsy. However, due to limitations in maneuverability and durability of the UN, other tools need to identified for this indication

    Concurrent stone stabilization improves ultrasonic and pneumatic efficacy during cystolithopaxy: an in vitro analysis.

    No full text
    ObjectiveTo identify whether stabilization of larger bladder stones would improve the efficacy of combination (ultrasonic/pneumatic) lithotripsy in a phantom bladder stone model for percutaneous cystolithopaxy.Materials and methodsUsing 1cm phantom Bego stones, a spherical model bladder was used to simulate percutaneous bladder access. A UroNet (US Endoscopy, USA) was placed alongside a Swiss Lithoclast probe through the working channel of a Storz 26Fr rigid nephroscope. Using a 30Fr working sheath, the stone was captured, and fragmented for 60 seconds. Resulting fragments and irrigation were filtered through a 1mm strainer, and recorded. Five trials were performed with and without the UN. Durability was then assessed by measuring net defects, and residual grasp strength of each instrument. Descriptive statistics (mean, standard deviations) were used to summarize the data, and Student's t-tests (alpha &lt; 0.05) were used to compare trials.ResultsThe mean time to stone capture was 12s (8-45s). After fragmentation with UN stabilization, there were significant improvements in the amount of residual stone (22% dry weight reduction vs 8.1% without UN, p &lt; 0.001), number of fragments (17.5 vs 5.0 frag/stone, p=0.0029), and fragment size (3.6mm vs. 7.05 mm, p=0.035). Mesh defects were noted in all nets, ranging from 2-14 mm, though all but one net retained their original grip strength (36.8N).ConclusionsBladder stone stabilization improved fragmentation when used in conjunction with ultrasonic/pneumatic lithotripsy. However, due to limitations in maneuverability and durability of the UN, other tools need to identified for this indication

    Assessment of Tissue Damage from Ultrasonic, Pneumatic and Combination Lithotripsy

    No full text
    Mentor: Manoj Monga MD (Urologic Surgery)Objective: To conduct a comparative evaluation of ultrasonic, pneumatic, and dual ultrasonic lithotripsy to predict the safety of probes on urinary tract tissue. Methods: Lithotriptors (medical device used to breakup kidney stones) tested were the Swiss Lithoclast Ultra (ultrasonic only - US, and ultrasonic-pneumatic combination US+P), and the Gyrus ACMI Cyberwand (dual ultrasonic). Fresh porcine ureters, bladders, and renal pelvis tissues were used for testing. A hands-free set up was used with each probe to vertically apply no pressure, 400 g, or 700 g of pressure for a duration of 3 seconds, 5 seconds or 180 seconds. Repetitive testing of each tissue/pressure/time combination was performed, for a total of 351 trials. Conclusion: All devices afforded a level of safety at tissue durations typical of inadvertent intraoperative contact (3-5 seconds), though the Lithoclast US-only was superior with regard to perforation for all tissue types. Overall, very similar results were observed between the Lithoclast US+P and Cyberwand.This research was supported by the Undergraduate Research Opportunities Program (UROP)
    corecore