9,206 research outputs found

    Effects of vertical vibration on hopper flows of granular material

    Get PDF
    This paper examines the flow of granular material through a wedge-shaped hopper subject to vertical, sinusoidal oscillations. Experiments and discrete element computer simulations were conducted to investigate particle trajectories within and mass discharge rates from the hopper. With the hopper exit closed, side wall convection cells are observed in both the experiments and simulations. The convection cells are oriented such that particles move up along the inclined walls of the hopper and down along the centerline. Results from the computer simulation indicate that the convection cells are a result of the dilation of the granular bed during free fall and interaction with hopper walls. Measurements of the mean mass discharge rate for various vibration parameters were also made in both the experiments and simulations. The ratio of the mass discharge rate for a vibrating hopper to the mass discharge rate for a non-vibrating hopper scales with the oscillation velocity amplitude and exhibits a maximum value just greater than one for oscillation velocity amplitudes less than 0.5. The ratio is less than one for larger velocity amplitudes. A simple model taking into account the change in the effective gravity acting on the granular material over an oscillation cycle is examined. A significant deficiency in the model is that is assumes no material discharges from the hopper during part of each oscillation cycle for acceleration amplitudes greater than gravitational acceleration. Data from the simulations indicate that although the discharge rate from the hopper varies throughout an oscillation cycle, it never equals zero. The simulation was also used to examine particle horizontal position and velocity profiles at the hopper exit. Lastly, preliminary observations of the effects of localized vibration on a granular material in a closed hopper are presented

    Investigation of f/2 and f/4 Waves in Granular Beds Subject to Vertical, Sinusoidal Oscillations

    Get PDF
    When a deep bed of granular material is subject to vertical, sinusoidal oscillations, a number of phenomena appear including two regimes of standing surface waves that form at one-half and one-quarter of the oscillation forcing frequency. These waves are referred to as f/2 and f/4 waves where f is the oscillation frequency. This paper presents the results from experiments and computer simulations designed to study the wavelength and wave amplitude dependence of the surface waves on the vibration parameters, collision coefficient of restriction, and the particle bed depth

    Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content

    Full text link
    Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and instructional styles. The nine courses studied had two key things in common: the labs aimed to reinforce the content presented in lectures, and the labs were optional. By comparing the performance of students who did and did not take the labs (with careful normalization for selection effects), we found universally and precisely no added value to learning from taking the labs as measured by course exam performance. This work should motivate institutions and departments to reexamine the goals and conduct of their lab courses, given their resource-intensive nature. We show why these results make sense when looking at the comparative mental processes of students involved in research and instructional labs, and offer alternative goals and instructional approaches that would make lab courses more educationally valuable.Comment: Accepted to Phys Rev PE

    Evaluation of Two Commercially Available Cannabidiol Formulations for Use in Electronic Cigarettes

    Get PDF
    Since 24 states and the District of Columbia have legalized marijuana in some form, suppliers of legal marijuana have developed Cannabis sativa products for use in electronic cigarettes (e-cigarettes). Personal battery powered vaporizers, or e-cigarettes, were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. The liquid formulations used in these devices are comprised of an active ingredient such as nicotine mixed with vegetable glycerin (VG) and/or propylene glycol (PG) and flavorings. A significant active ingredient of C. sativa, cannabidiol (CBD), has been purported to have anti-convulsant, anti-nociceptive, and anti-psychotic properties. These properties have potential medical therapies such as intervention of addictive behaviors, treatments for epilepsy, management of pain for cancer patients, and treatments for schizophrenia. However, CBD extracted from C. sativa remains a DEA Schedule I drug since it has not been approved by the FDA for medical purposes. Two commercially available e-cigarette liquid formulations reported to contain 3.3 mg/mL of CBD as the active ingredient were evaluated. These products are not regulated by the FDA in manufacturing or in labeling of the products and were found to contain 6.5 and 7.6 mg/mL of CBD in VG and PG with a variety of flavoring agents. Presently, while labeled as to content, the quality control of manufacturers and the relative safety of these products is uncertain

    Aftershocks and Preearthquake Seismicity

    Get PDF
    Although primary surface faulting was mapped for nearly 30 km, aftershocks extended in a complex pattern more than 100 km along the trend of the Imperial fault. A first-motion focal mechanism for the main shock is consistent with right-lateral motion on a vertical fault striking N. 42° W., in agreement with the strike of the Imperial fault within the limits of resolution. There is evidence that conjugate faulting on a buried complementary northeast-trending structure occurred at the north limit of displacement on the Imperial fault near Brawley, Calif. This faulting was apparently initiated at the time of a magnitude 5.8 aftershock 8 hours after the main shock. A line of epicenters extending along the trend of the San Andreas fault nearly 100 km into the eastern Imperial Valley was noted during the aftershock sequence, in an area recognized as notably aseismic during the preceding 5 years. The main shock was preceded by a 3-month period of significantly reduced seismicity affecting the central Imperial Valley. Although three small events near the incipient epicenter during this interval may be deemed foreshocks, no distinct foreshocks immediately before the main shock were observed

    Single-channel digital command-detection system

    Get PDF
    System, fabricated of highly-reliable digital logic elements, operates on binary pulse-code-modulated signals and derives internal synchronization from data signal. All-digital implementation of detector develops synchronization from data signal by computer cross-correlation of command modulation signal with its expected forms in sequence and adjusts detector phases in accordance with correlation peaks

    Method and apparatus for a single channel digital communications system

    Get PDF
    A method and apparatus are described for synchronizing a received PCM communications signal without requiring a separate synchronizing channel. The technique provides digital correlation of the received signal with a reference signal, first with its unmodulated subcarrier and then with a bit sync code modulated subcarrier, where the code sequence length is equal in duration to each data bit

    Mammy\u27s Little Honey Boy

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2073/thumbnail.jp

    2-Fluoro-4-(meth­oxy­carbon­yl)benzoic acid

    Get PDF
    In the crystal of the title compound, C9H7FO4, classical carboxylate inversion dimers are linked by pairs of O—H⋯O hydrogen bonds. The packing is consolidated by C—H⋯F and C—H⋯O interactions. The benzene ring and the methoxycarbonyl group are nearly coplanar, with a dihedral angle of 1.5 (3)° between them, whereas the carboxyl group has a dihedral angle of 20.2 (4)° with respect to the benzene ring
    corecore