739 research outputs found
Electrical and optical characterization of semiconducting Ru2Si3 films and single crystals
Recently, Ru2Si3 has been predicted to be a direct semiconductor with a band gap of approximate to0.8 eV. Since the corresponding wavelength of this potential light emitter coincides with the absolute absorption minimum of glass fibers of 1.5 mum, considerable attention has been attracted. Measurements of the temperature dependence of the electrical resistivity of silicide films on insulating substrates were carried out in van der Pauw geometry. The results were explained by assuming carrier hopping over grain boundaries. The optical absorption coefficient was measured on thin films grown on various substrates, on self-sustaining films, where the substrate was partly removed and on a single crystal by photothermal deflection spectroscopy. A direct band gap at 0.84 eV was found. The absorption coefficient is very low up to approximate to1.5 eV, likely due to a low density of states, and then strongly increases at higher energies. The experimental results qualitatively confirm the predictions of the band structure calculations. (C) 2001 American Institute of Physics
Algorithmic Interpretations of Fractal Dimension
We study algorithmic problems on subsets of Euclidean space of low fractal dimension. These spaces are the subject of intensive study in various branches of mathematics, including geometry, topology, and measure theory. There are several well-studied notions of fractal dimension for sets and measures in Euclidean space. We consider a definition of fractal dimension for finite metric spaces which agrees with standard notions used to empirically estimate the fractal dimension of various sets. We define the fractal dimension of some metric space to be the infimum delta>0, such that for any eps>0, for any ball B of radius r >= 2eps, and for any eps-net N, we have |B cap N|=O((r/eps)^delta).
Using this definition we obtain faster algorithms for a plethora of classical problems on sets of low fractal dimension in Euclidean space. Our results apply to exact and fixed-parameter algorithms, approximation schemes, and spanner constructions. Interestingly, the dependence of the performance of these algorithms on the fractal dimension nearly matches the currently best-known dependence on the standard Euclidean dimension. Thus, when the fractal dimension is strictly smaller than the ambient dimension, our results yield improved solutions in all of these settings.
We remark that our definition of fractal definition is equivalent up to constant factors to the well-studied notion of doubling dimension.
However, in the problems that we consider, the dimension appears in the exponent of the running time, and doubling dimension is not precise enough for capturing the best possible such exponent for subsets of Euclidean space. Thus our work is orthogonal to previous results on spaces of low doubling dimension; while algorithms on spaces of low doubling dimension seek to extend results from the case of low dimensional Euclidean spaces to more general metric spaces, our goal is to obtain faster algorithms for special pointsets in Euclidean space
Optical Properties of Deep Ice at the South Pole - Absorption
We discuss recent measurements of the wavelength-dependent absorption
coefficients in deep South Pole ice. The method uses transit time distributions
of pulses from a variable-frequency laser sent between emitters and receivers
embedded in the ice. At depths of 800 to 1000 m scattering is dominated by
residual air bubbles, whereas absorption occurs both in ice itself and in
insoluble impurities. The absorption coefficient increases approximately
exponentially with wavelength in the measured interval 410 to 610 nm. At the
shortest wavelength our value is about a factor 20 below previous values
obtained for laboratory ice and lake ice; with increasing wavelength the
discrepancy with previous measurements decreases. At around 415 to 500 nm the
experimental uncertainties are small enough for us to resolve an extrinsic
contribution to absorption in ice: submicron dust particles contribute by an
amount that increases with depth and corresponds well with the expected
increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The
laser pulse method allows remote mapping of gross structure in dust
concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9
figures, not included, available on request from [email protected]
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
Search for Point Sources of High Energy Neutrinos with AMANDA
This paper describes the search for astronomical sources of high-energy
neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes,
used for the detection of Cherenkov light from upward traveling
neutrino-induced muons, buried deep in ice at the South Pole. The absolute
pointing accuracy and angular resolution were studied by using coincident
events between the AMANDA detector and two independent telescopes on the
surface, the GASP air Cherenkov telescope and the SPASE extensive air shower
array. Using data collected from April to October of 1997 (130.1 days of
livetime), a general survey of the northern hemisphere revealed no
statistically significant excess of events from any direction. The sensitivity
for a flux of muon neutrinos is based on the effective detection area for
through-going muons. Averaged over the Northern sky, the effective detection
area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the
atmosphere by cosmic ray interactions were used to verify the predicted
performance of the detector. For a source with a differential energy spectrum
proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain
E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
Hybrid Cybernetic Modeling of Polyhydroxyalkanoate Production in Cupriavidus necator using Fructose and Acetate as Substrates
Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector
A search for nearly vertical up-going muon-neutrinos from neutralino
annihilations in the center of the Earth has been performed with the AMANDA-B10
neutrino detector. The data sample collected in 130.1 days of live-time in
1997, ~10^9 events, has been analyzed for this search. No excess over the
expected atmospheric neutrino background is oberved. An upper limit at 90%
confidence level on the annihilation rate of neutralinos in the center of the
Earth is obtained as a function of the neutralino mass in the range 100
GeV-5000 GeV, as well as the corresponding muon flux limit.Comment: 14 pages, 11 figures. Version accepted for publication in Physical
Review
The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter
With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV
and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the
first of a new generation of high energy neutrino telescopes, reaching a scale
envisaged over 25 years ago. We describe its performance, focussing on the
capability to detect halo dark matter particles via their annihilation into
neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures.
Talk presented at the 3rd International Symposium on Sources and Detection of
Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199
The AMANDA Neutrino Telescope: Principle of Operation and First Results
AMANDA is a high-energy neutrino telescope presently under construction at
the geographical South Pole. In the Antarctic summer 1995/96, an array of 80
optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths
between 1.5 and 2 km. In this paper we describe the design and performance of
the AMANDA-B4 prototype, based on data collected between February and November
1996. Monte Carlo simulations of the detector response to down-going
atmospheric muon tracks show that the global behavior of the detector is
understood. We describe the data analysis method and present first results on
atmospheric muon reconstruction and separation of neutrino candidates. The
AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97
(AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic
- âŠ