6 research outputs found

    Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision.

    Get PDF
    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems

    How and why do species break a developmental trade-off? Elucidating the association of trichomes and stomata across species.

    Get PDF
    PREMISE Previous studies have suggested a trade-off between trichome density (Dt) and stomatal density (Ds) due to shared cell precursors. We clarified how, when, and why this developmental trade-off may be overcome across species. METHODS We derived equations to determine the developmental basis for Dt and Ds in trichome and stomatal indices (it and is) and the sizes of epidermal pavement cells (e), trichome bases (t), and stomata (s) and quantified the importance of these determinants of Dt and Ds for 78 California species. We compiled 17 previous studies of Dt-Ds relationships to determine the commonness of Dt-Ds associations. We modeled the consequences of different Dt-Ds associations for plant carbon balance. RESULTS Our analyses showed that higher Dt was determined by higher it and lower e, and higher Ds by higher is and lower e. Across California species, positive Dt-Ds coordination arose due to it-is coordination and impacts of the variation in e. A Dt-Ds trade-off was found in only 30% of studies. Heuristic modeling showed that species sets would have the highest carbon balance with a positive or negative relationship or decoupling of Dt and Ds, depending on environmental conditions. CONCLUSIONS Shared precursor cells of trichomes and stomata do not limit higher numbers of both cell types or drive a general Dt-Ds trade-off across species. This developmental flexibility across diverse species enables different Dt-Ds associations according to environmental pressures. Developmental trait analysis can clarify how contrasting trait associations would arise within and across species

    The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in Arabidopsis thaliana

    No full text
    The influence of the dynamics of leaf hydraulic conductance (K-leaf) diurnally and during dehydration on stomatal conductance and photosynthesis remains unclear. Using the model species Arabidopsis (Arabidopsis thaliana ecotype Columbia-0), we applied a multitiered approach including physiological measurements, high-resolution x-ray microcomputed tomography, and modeling at a range of scales to characterize (1) K-leaf decline during dehydration; (2) its basis in the hydraulic conductances of leaf xylem and outside-xylem pathways (K-ox); (3) the dependence of its dynamics on irradiance; (4) its impact on diurnal patterns of stomatal conductance and photosynthetic rate; and (5) its influence on gas exchange and survival under simulated drought regimes. Arabidopsis leaves showed strong vulnerability to dehydration diurnally in both gas exchange and hydraulic conductance, despite lack of xylem embolism or conduit collapse above the turgor loss point, indicating a pronounced sensitivity of K-ox to dehydration. K(leaf )increased under higher irradiance in well-hydrated leaves across the full range of water potential, but no shift in K-leaf vulnerability was observed. Modeling indicated that responses to dehydration and irradiance are likely attributable to changes in membrane permeability and that a dynamic K-ox would contribute strongly to stomatal closure, improving performance, survival, and efficient water use during drought. These findings for Columbia-0 provide a baseline for assessing variation across genotypes in hydraulic traits and their influence on gas exchange during dehydration
    corecore