225 research outputs found

    A Genome-Wide Association Study of Red Blood Cell Traits Using the Electronic Medical Record

    Get PDF
    The Electronic Medical Record (EMR) is a potential source for high throughput phenotyping to conduct genome-wide association studies (GWAS), including those of medically relevant quantitative traits. We describe use of the Mayo Clinic EMR to conduct a GWAS of red blood cell (RBC) traits in a cohort of patients with peripheral arterial disease (PAD) and controls without PAD.Results for hemoglobin level, hematocrit, RBC count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were extracted from the EMR from January 1994 to September 2009. Out of 35,159 RBC trait values in 3,411 patients, we excluded 12,864 values in 1,165 patients that had been measured during hospitalization or in the setting of hematological disease, malignancy, or use of drugs that affect RBC traits, leaving a final genotyped sample of 3,012, 80% of whom had β‰₯2 measurements. The median of each RBC trait was used in the genetic analyses, which were conducted using an additive model that adjusted for age, sex, and PAD status. We identified four genomic loci that were associated (P<5 Γ— 10(-8)) with one or more of the RBC traits (HBLS1/MYB on 6q23.3, TMPRSS6 on 22q12.3, HFE on 6p22.1, and SLC17A1 on 6p22.2). Three of these loci (HBLS1/MYB, TMPRSS6, and HFE) had been identified in recent GWAS and the allele frequencies, effect sizes, and the directions of effects of the replicated SNPs were similar to the prior studies.Our results demonstrate feasibility of using the EMR to conduct high throughput genomic studies of medically relevant quantitative traits

    Active Learning for Detection of Mine-Like Objects in Side-Scan Sonar Imagery

    Full text link

    A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2.

    Get PDF
    There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (pβ€Š=β€Š0.003, H1N1) and 38 hours (p-valueβ€Š=β€Š0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    Cost-effectiveness of stereotactic body radiation therapy versus video assisted thoracic surgery in medically operable stage I non-small cell lung cancer: A modeling study

    Get PDF
    Objectives: Stage I non-small cell lung cancer (NSCLC) can be treated with either Stereotactic Body Radiotherapy (SBRT) or Video Assisted Thoracic Surgery (VATS) resection. To support decision making, not only the impact on survival needs to be taken into account, but also on quality of life, costs and cost-effectiveness. Therefore, we performed a cost-effectiveness analysis comparing SBRT to VATS resection with respect to quality adjusted life years (QALY) lived and costs in operable stage I NSCLC. Materials and methods: Patient level and aggregate data from eight Dutch databases were used to estimate costs, health utilities, recurrence free and overall survival. Propensity score matching was used to minimize selection bias in these studies. A microsimulation model predicting lifetime outcomes after treatment in stage I NSCLC patients was used for the cost-effectiveness analysis. Model outcomes for the two treatments were overall survival, QALYs, and total costs. We used a Dutch health care perspective with 1.5 % discounting for health effects, and 4 % discounting for costs, using 2018 cost data. The impact of model parameter uncertainty was assessed with deterministic and probabilistic sensitivity analyses. Results: Patients receiving either VATS resection or SBRT were estimated to live 5.81 and 5.86 discounted QALYs, respectively. Average discounted lifetime costs in the VATS group were €29,269 versus €21,175 for SBRT. Difference in 90-day excess mortality between SBRT and VATS resection was the main driver for the difference in QALYs. SBRT was dominant in at least 74 % of the probabilistic simulations. Conclusion: Using a microsimulation model to combine available evidence on survival, costs, and health utilities in a cost-effectiveness analysis for stage I NSCLC led to the conclusion that SBRT dominates VATS resection in the majority of simulations

    Lhx2 Is Required for Patterning and Expansion of a Distinct Progenitor Cell Population Committed to Eye Development

    Get PDF
    Progenitor cells committed to eye development become specified in the prospective forebrain and develop subsequently into the optic vesicle and the optic cup. The optic vesicle induces formation of the lens placode in surface ectoderm from which the lens develops. Numerous transcription factors are involved in this process, including the eye-field transcription factors. However, many of these transcription factors also regulate the patterning of the anterior neural plate and their specific role in eye development is difficult to discern since eye-committed progenitor cells are poorly defined. By using a specific part of the Lhx2 promoter to regulate Cre recombinase expression in transgenic mice we have been able to define a distinct progenitor cell population in the forebrain solely committed to eye development. Conditional inactivation of Lhx2 in these progenitor cells causes an arrest in eye development at the stage when the optic vesicle induces lens placode formation in the surface ectoderm. The eye-committed progenitor cell population is present in the Lhx2βˆ’/βˆ’ embryonic forebrain suggesting that commitment to eye development is Lhx2-independent. However, re-expression of Lhx2 in Lhx2βˆ’/βˆ’ progenitor cells only promotes development of retinal pigment epithelium cells, indicating that Lhx2 promotes the acquisition of the oligopotent fate of these progenitor cells. This approach also allowed us to identify genes that distinguish Lhx2 function in eye development from that in the forebrain. Thus, we have defined a distinct progenitor cell population in the forebrain committed to eye development and identified genes linked to Lhx2's function in the expansion and patterning of these progenitor cells
    • …
    corecore