143 research outputs found

    Probability of false negative results in GSR detection: a Bayesian approach

    Full text link
    We calculated the probability of obtaining false negative results in GSR detection depending on the resolution setup for sample scanning, in order to quantitatively describe the trade-off between low false negative rates in the detection of characteristic particles and the effort that measurements entail. We built and validated a GSR particle detection model that associates particle size with equipment registers, and we applied it to samples analyzed by a forensic science laboratory. Our results indicate that the probability of a false negative, i.e. a result where all characteristic particles in a sample which go undetected, is below 5\% for pixel sizes below 0.32μm0.32 \mu m. These results indicate that pixel sizes as great as the double that is commonly used in usual laboratory casework are effective for an initial scanning of a sample as it yields good rates of detection of characteristic particles, which might exponentially reduce laboratory workload.Comment: preprint, 14 pages, 8 figure

    The water supercooled regime as described by four common water models

    Get PDF
    The temperature scale of simple water models in general does not coincide with the natural one. Therefore, in order to make a meaningful evaluation of different water models a temperature rescaling is necessary. In this paper we introduce a rescaling using the melting temperature and the temperature corresponding to the maximum of the heat capacity to evaluate four common water models (TIP4P-Ew, TIP4P-2005, TIP5P-Ew and Six-Sites) in the supercooled regime. Although all the models show the same general qualitative behavior, the TIP5P-Ew appears as the best representation of the supercooled regime when the rescaled temperature is used. We also analyze, using thermodynamic arguments, the critical nucleus size for ice growth. Finally, we speculate on the possible reasons why atomistic models do not usually crystalize while the coarse grained mW model do crystallize.Comment: 8 pages, 8 figure

    Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds

    Full text link
    A signature independent formalism is created and utilized to determine the general second-order symmetry operators for Dirac's equation on two-dimensional Lorentzian spin manifolds. The formalism is used to characterize the orthonormal frames and metrics that permit the solution of Dirac's equation by separation of variables in the case where a second-order symmetry operator underlies the separation. Separation of variables in complex variables on two-dimensional Minkowski space is also considered.Comment: This paper is dedicated to Professor Willard Miller, Jr. on the occasion of his retirement from the School of Mathematics at the University of Minnesot

    How large is "large NcN_c" for Nuclear matter?

    Full text link
    We argue that a so far neglected dimensionless scale, the number of neighbors in a closely packed system, is relevant for the convergence of the large NcN_c expansion at high chemical potential. It is only when the number of colors is large w.r.t. this new scale (\sim \order{10}) that a convergent large NcN_c limit is reached. This provides an explanation as to why the large NcN_c expansion, qualitatively successful in in vacuum QCD, fails to describe high baryo-chemical potential systems, such as nuclear matter. It also means that phenomenological claims about high density matter based on large NcN_c extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247

    Phase diagrams in nonlocal PNJL models constrained by Lattice QCD results

    Full text link
    Based on lattice QCD-adjusted SU(2) nonlocal Polyakov--Nambu--Jona-Lasinio (PNJL) models, we investigate how the location of the critical endpoint in the QCD phase diagram depends on the strenght of the vector meson coupling, as well as the Polyakov-loop (PL) potential and the form factors of the covariant model. The latter are constrained by lattice QCD data for the quark propagator. The strength of the vector coupling is adjusted such as to reproduce the slope of the pseudocritical temperature for the chiral phase transition at low chemical potential extracted recently from lattice QCD simulations. Our study supports the existence of a critical endpoint in the QCD phase diagram albeit the constraint for the vector coupling shifts its location to lower temperatures and higher baryochemical potentials than in the case without it.Comment: 23 pages, 10 figures. Version accepted in Phys. Part. Nucl. Lett. (to appear), references adde

    Chiral Modulations in Curved Space II: Conifold Geometries

    Full text link
    In this paper, we extend our previous analysis concerning the formation of inhomogeneous condensates in strongly-coupled fermion effective field theories on curved spaces and include the case of conifold geometries that represent the simplest tractable case of manifolds with curvature singularities. In the set-up considered here, by keeping the genuine thermodynamical temperature constant, we may single out the role that curvature effects play on the breaking/restoration of chiral symmetry and on the appearance of inhomogeneous phases. The first goal of this paper is to construct a general expression of the finite temperature effective action for inhomogeneous condensates in the case of four-fermion effective field theories on conifold geometries with generic Riemannian smooth base (generalised cones). The other goal is to implement numerically the above formal results and construct self-consistent solutions for the condensate. We explicitly show that the condensate assumes a kink-like profile, vanishing at the singularity that is surrounded by a bubble of restored chiral symmetry phase.Comment: 14 pages; 4 figure

    Quantum liquids resulting from quark systems with four-quark interaction

    Get PDF
    Quark ensembles influenced by strong stochastic vacuum gluon fields are investigated within the four-fermion interaction approximation. The comparative analysis of several quantum liquid models is performed and this analysis leads to the conclusion that the presence of a gas–liquid phase transition is their characteristic feature. The problem of the instability of small quark number droplets is discussed and it is argued that it is rooted in the chiral soliton formation. The existence of a mixed phase of the vacuum and baryon matter is proposed as a possible explanation of the latter stability
    corecore