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Abstract Quark ensembles influenced by strong stochastic
vacuum gluon fields are investigated within the four-fermion
interaction approximation. The comparative analysis of sev-
eral quantum liquid models is performed and this analysis
leads to the conclusion that the presence of a gas–liquid phase
transition is their characteristic feature. The problem of the
instability of small quark number droplets is discussed and it
is argued that it is rooted in the chiral soliton formation. The
existence of a mixed phase of the vacuum and baryon matter
is proposed as a possible explanation of the latter stability.

Introduction

The present paper is motivated by world-wide ambitious
experimental programs to study the collisions of heavy
ions at ultra-relativistic energies to create the quark–gluon
plasma (QGP) and to investigate its properties. An obvious
great challenge for the theoretical (and phenomenological)
endeavors to perform this research is to be able to follow
the evolution of a system created in such collisions from its
initial state to a near-equilibrium plasma state and eventu-
ally to the final hadrons which are measured by detectors.
Solving the problem of equilibrating and thermalizing in the
framework of microscopic quark and gluon dynamics one
needs to deal with the time-dependent strongly interacting
systems not only at the asymptotically weak or strong cou-
pling. Nowadays this task is obviously unrealizable and the
current response on the requirements of progressing exper-
iment is mainly based on the phenomenological considera-
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tion of relativistic heavy ion collisions as evolving through
the certain stages.

As is believed, the initial heavy ion collisions at relativis-
tic energies release the hadron constituents (partons) result-
ing in the highly non-equilibrium strongly interacting matter.
The success of applying near-equilibrium hydrodynamics to
describe the subsequent evolution of such a matter to describe
the existing experimental data [1–5] suggests the system cre-
ated is rather a quark–gluon liquid. Theoretically the transi-
tion between the nonequilibrium and equilibrium stages is
still far from clear. But the data analysis foresees a very fast
thermalization, i.e., sufficient degree of local equilibrium or,
rather, isotropization, since the equations of hydrodynam-
ics do not include the temperature of the produced matter
with explicit collective properties. In recent years, there have
appeared several scenarios of what could be the dynamics of
a system transiting from the initial collision state to that when
it becomes (almost) equilibrium [6]. However, this problem
is not discussed in the present paper. Instead, we focus on
another aspect of the problem, namely, the presence of the
strong interaction in a system produced or, in other words,
the small mean free path of its constituents, and on trying to
understand the very nature of such interactions in a system
whose dynamics is governed by the coupling constant, which
is likely not too large (at the LHC energies the running cou-
pling constant in QCD is αs ∼ 0.3–0.4) avoiding AdS/CFT
duality (holographic QCD) arguments very popular at the
moment [7,8].

The four-fermion (QCD-like) field theories still remain a
most reliable source of quantitative information in the stud-
ies of the transport properties of strongly correlated systems
and their thermodynamics, in particular, a chiral phase tran-
sition between massive hadrons and almost massless quarks.
It is a thermodynamics that provides us with some general
framework which lets one understand how the properties of
macroscopic matter and, in particular, its collective behavior,
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emerge from the laws that govern microscopic dynamics. The
results of this work allow us to suppose with a level of argu-
mentation that is sufficiently high, in our view, that the picture
based on the complex collective behavior of quarks (anti-
quarks, gluons), which is expressed in the presence of vac-
uum condensates even under normal conditions, can be set by
the nontrivial thermodynamic properties of vacuum, which
eventually determine the observable properties of strongly
interacting matter. In our opinion, this possibility was not
sufficiently widely discussed and, even more so, used already
at the initial stage of studies of the quark–gluon matter due
to purely accidental circumstances.

1 Thermodynamics of the ensemble

In the present work we consider some aspects of the ther-
modynamical description of the quark ensemble with a four-
fermion interaction Hamiltonian density (generated, as it is
believed, by a strong stochastic gluon field)

H = −q̄ (iγ∇ + m) q − jaμ

∫
d y 〈Aa

μA
′b
ν 〉 j ′bν , (1)

where jaμ = q̄taγμq is the quark current, with corresponding
quark operators q, q̄ , taken in the spatial point x (the vari-
ables with prime corresponds to the y point), m is the current
quark mass, ta = λa/2 is the color gauge group SU (Nc)

generators, μ, ν = 0, 1, 2, 3. We take the gluon field cor-
relator 〈Aa

μA
′b
ν 〉 in the simple form of a color singlet, with

contact (in time) interaction (without retarding)1

〈Aa
μA

′b
ν 〉 = G δab δμν F(x − y) (2)

(we do not include the corresponding delta-function on time
in this formula). This simple correlation function is a frag-
ment of the corresponding ordered exponent and besides the
four-fermion interaction accompanied by an infinite number
of multi-fermion vertices arises. But for our purposes here
it would be quite enough restrict ourselves with this simple
form. The effective interactions mentioned above appear in
a natural way by the coarse-grained description of the sys-
tem with handling the corresponding averaging procedure,
and having in mind that the vacuum gluon field changed
stochastically (for example, in the form of instanton liquid;
see [9–11]). But this elaboration of the effective Hamiltonian
resulting from the first principles of quantum chromodynam-
ics (QCD) will be unessential for us, as will be demonstrated
below. The choice of correlation function in the simplest form
with instantaneous interaction does not generate any problem
at transforming the final results from the Minkovski space to
the Euclidean one and the form factor F(x) is interpreted

1 Generally speaking, in such a correlation function the terms spanned
on the vector of relative distance are allowed, but for simplicity we
ignore them.

in a simple way as an interaction ‘potential’ of point-like
particles. The correlation function itself looks, formally, like
a gauge non-invariant object.2 Nevertheless, there exists an
effective way to significantly compensate for this shortcom-
ing, if all similar ‘potentials’ are looked through, in some
sense, (to be elucidated below). For example, this set would
be quite perceptible, if it becomes possible to confront two
limits opposite in physics, for example, starting from the
form factor with a delta-like function in the coordinate space
(the Nambu–Jona–Lasinio (NJL) model [12], the correlation
length is finite in this case) and extended to the form factor
of a delta-like function in the momentum space (clearly, the
correlation length tends to infinity in this case), analogous
to what is well known in condensed matter physics as the
Keldysh model (KKB) [13–16].

It is worth to remark here that we will need only one of its
properties, although one of exceptional importance, which is
related to the fact that, due to the special form factor behavior,
all the momentum integrations in the problem get factorized
and effectively the problem becomes one-dimensional (then
only integrations over energy are in play).

In the KKB model the fermion behavior is considered in
the stochastic random field with an infinite correlation length
(the NJL model corresponds to the ‘white noise’ with zero
correlation length). In this case one is lucky enough to be
able to ‘sum up’ an entire diverging series and, therefore, to
demonstrate that fermions are in general not on mass shell.
Actually, it looks like one of the possible scenarios of quark
confinement although there exist the standard statements that
the four-fermion interaction models do not lead to the con-
finement of quarks and are non-renormalizable. However,
recently it was shown that the KKB model (which is akin
to the NJL one) possesses the remarkable property of exact
integrability (in the sense by Thirring or Luttinger) [17] and
in spite of the presence of divergences (as in the well-known
practical field theories) in the intermediate calculations the
final results turn out to be finite. Another peculiar fact of such
a model is that the Dirac sea displays a finite relative depth
with momentum cutoff increasing. Another interesting quark
confinement mechanism is discussed in the model in which
the quarks are ‘living’ off mass shell, similarly to the KKB
model, given in Ref. [18–20].

From this point of view, other models with an arbitrary
form factor (including the NJL model) could be represented
as a superposition of elementary blocks obtained by using the
KKB model. The utmost distributions mentioned above can
be considered as a limiting case for the corresponding Gaus-
sian correlators in the coordinate and momentum spaces,

2 It is obvious that we are dealing with an approximate calculation of the
corresponding generating functional for some specific conditions with
the restricted area of applicability that does not imply the calculation of
functional derivatives of arbitrary order.
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which, of course, look more realistic. The coupling constant
scale G, which will turn out to be interesting for applica-
tions, can be tuned by using the corresponding PDG meson
observables. Comparing the results obtained (by continuity
arguments) one can draw some conclusions about the behav-
ior of the system with practically any interaction potential.

We consider it necessary to comment briefly on the case
with a linear potential, which was always giving hope to
discover an unusual feature in quark behavior, thereby shed-
ding some light on the nature of confinement. Meanwhile, at
present, however, it appears that such a singular ‘potential’
is even superfluous for our purposes, since the properties,
we are interested in, are already revealed in the KKB model,
which, in a sense, is like ‘half way’ from the NJL model to
that with a linear potential. Secondly, the quasiparticles in the
model with a linearly increasing potential can not basically
be distinguished from those in, for example, the NJL model,
provided an integrable infrared singularity in the former is
eliminated. As a result the same massive objects appear with-
out the anomalies in the energy spectrum. Additionally, the
analysis shows that the multi-fermion contributions present
in the problem in the general case can be reduced to the four-
fermion interaction in an acceptable way by inserting the
respective vacuum expectation values. In other words, even
the Hamiltonian of the form (1) seems to capture the essential
features of quark interactions. Besides, already in the KKB
model the imaginary parts of the appropriate effective scat-
tering matrix in scalar, pseudoscalar, vector, and axial-vector
channels are equal to zero, i.e. the free quarks do not appear
in this scenario of dominating correlations. We give more
comments on this point below in the chapter devoted to the
polarization operator.

It is believed that at sufficiently large interaction the
ground state of the system transforms from a trivial vac-
uum |0〉 (the vacuum of free Hamiltonian) to the mixed
state (with quark–antiquark pairs with the opposite momenta
and vacuum quantum numbers) which is presented as the
Bogolyubov trial function (in that way some separate refer-
ence frame is introduced and the chiral phase becomes fixed)

|σ 〉 = T |0〉, T =
∏
p,s

exp[ϕp (a+
p,sb

+−p,s + ap,sb−p,s)].

Here a+, a, and b+, b are the quark creation and annihi-
lation operators, a|0〉 = 0, b|0〉 = 0. The dressing trans-
formation T transmutes the quark operators to the creation
and annihilation operators of quasiparticles A = T a T †,
B+ = T b+T †.

The thermodynamic properties of a quark ensemble are
known to be determined by solving the following problem.
It is required to find a statistical operator

ξ = e−β Ĥapp

Z0
, Z0 = Tr {e−β Ĥapp}, (3)

that at fixed mean charge

Q0 = Tr{ξ Q0} = V γ

∫
d p̃ (n − n̄), (4)

dp̃ = dp/(2π)3, (Q0 = q̄γ 0q), and fixed mean entropy

S = −Tr{ξ S}
= − V γ

∫
d p̃ [n ln n + (1 − n) ln(1 − n) +

+ n̄ ln n̄ + (1 − n̄) ln(1 − n)], (5)

S = − ln ξ , provides a minimal value of mean energy of the
quark ensemble

E = Tr{ξ H}
(H = ∫

dx H). In other words, we are interested in the
minimum of the following functional:

� = E − μ Q0 − T S, (6)

where μ and T denote the Lagrangian multipliers for the
chemical potential of the quark/baryon charge (which is
usually taken to be three times larger than the baryon one
in phenomenological considerations) and the temperature
(β = T−1), respectively. V is the volume the system is
enclosed in, γ = 2Nc (in the case of several quark flavors
γ = 2NcNf , where Nf is the flavor number), n = Tr{ξ A+A},
n̄ = Tr{ξ B+B} are the components of the corresponding
density matrix.

We restrict ourselves by considering the Bogolyubov–
Hartree–Fock approximation in which the statistical oper-
ator is constructed on the basis of approximating the effec-
tive Hamiltonian Happ, quadratic in creation and annihilation
operators for quasiparticles acting in the corresponding Fock
space with a vacuum state |σ 〉. The average specific energy
per quark w = E/(V γ ) results in [21–23]

w =
∫

d p̃ p0 −
∫

d p̃ (1 − n − n̄) p0 cos θ −

− 1

2

∫
d p̃ (1 − n − n̄) sin(θ − θm) M( p), (7)

where

M( p) = 2G
∫

dq̃ (1 − n′ − n̄′) sin(θ ′ − θ ′
m) F( p + q),

θ = 2ϕ, p0 = ( p2 + m2)1/2, the primed variables, corre-
spond to the integration over momentum q. The auxiliary
angle θm is determined from the relation sin θm = m/p0.
The first term in Eq. (7) is introduced in view of normalizing
in such a way as to have the zero energy of ground state when
the interaction is switched off. This constant is unessential
for the following consideration and may be omitted, however,
it should be kept in mind that it will appear as a regularizer
in singular expressions further in the text.
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Fig. 1 The most stable equilibrium angles θ (in degrees) as a function
of momentum p in MeV. The solid line is for the NJL model, the dashed
one corresponds to the KKB model

The most stable extremals of the functional (7) are pre-
sented for comparison with the solid line for the NJL model
and the dashed one for the KKB model under normal con-
ditions (T = 0, μ = 0) in Fig. 1. For the delta-like poten-
tial in coordinate space (the NJL model) the expression (7)
diverges and to obtain the reasonable results the upper limit
cutoff in the momentum integration � is introduced being
one of the tuning model parameters along with the coupling
constant G and current quark mass m. Below, we use one of
the standard sets of the parameters for the NJL model [24]:
� = 631 MeV, G�2/(2π2) ≈ 1.3, m = 5.5 MeV, whereas
the KKB model parameters are chosen in such a way that
for the same quark current masses the dynamical quark ones
in both NJL and KKB models coincide at vanishing quark
momentum. The momentum pϑ (parameter) corresponds to
the maximal attraction between quark and antiquark. The
value of this parameter inversed determines a characteristic
size of the quasiparticle.

It is of order of pϑ ∼ (mMq)
1/2, where Mq is a char-

acteristic quark dynamical mass for the models considered,
i.e. the quasiparticle size is comparable with the size the of
π meson (Goldstone particle). It is a remarkable fact that
the quasiparticle, as is seen from Fig. 1, does not depend
noticeably on the form factor profile or, in other words, on
the scale, but rather depends on the coupling constant. Using
the properties of extremals the functional expression (7) can
be transformed to the form (see [21–23])

w =
∫

d p̃ p0 −
∫

d p̃ (1 − n − n̄) P0 +

+ 1

4G

∫
d p̃dq̃ F( p + q) M̃( p)M̃(q), (8)

Fig. 2 Three branches of solutions for the dynamical quark mass (in
MeV) for the KKB model as a function of momentum (MeV). The
imaginary parts of the solutions are shown by dots

where P0 = [ p2 + M2
q ( p)]1/2 is the energy of the quark

quasiparticle with the dynamical quark mass

Mq( p) = m + M( p) = m +
∫

dq̃ F( p + q) M̃(q). (9)

Below we omit often the arguments of the corresponding
functions for the mass and quasiparticle energy. Varying the
functional (8) with respect to the density of the induced quasi-
particle mass M̃ (in such a form it is convenient to take varia-
tional derivatives3) we obtain the equation for the dynamical
quark mass as

Mq( p) = m + 2G
∫

dq̃ (1 − n′ − n̄′)
M ′

q

P ′
0

F( p + q), (10)

which corresponds exactly to the mean field approximation.
In particular, under normal conditions (T = 0, μ = 0) the
dynamical quark mass in the NJL model is Mq ∼ 340 MeV,
whereas the dynamical quark mass of the KKB model is
determined by the following equation:

M( p) = 2G
Mq( p)

P0
. (11)

In practice, it is convenient to use an inverse function p(Mq).
Then in the chiral limit Mq = (4G2 − p2)1/2, at | p| < 2G,
and Mq = 0 when | p| > 2G. In this case the quark states
with momenta | p| < 2G are degenerate in energy P0 = 2G.
Figure 2 demonstrates three branches of solutions of Eq. (11)

3 If one decides to take the dynamical quark mass Mq, as a basic vari-
able, then it is seen from Eq. (9) that formulating an inverse transfor-
mation from Mq to M̃ , suitable for handling, is difficult.
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for the dynamical quark mass. The dots show the imaginary
part of the solutions which are generated at the point where
two real solution branches merge.

2 Mean energy as a functional of quantum liquid theory

The goal that we pursued while passing from the expression
for specific energy (7) to Eq. (8) was to derive such a form as
would easily be recognized as the Landau energy functional
of the Fermi-liquid theory [25–29]. Some aspects of this the-
ory are interesting and useful apply for comparing the results
obtained in the NJL and KKB models. We will also discuss
the first order phase transition, which is apparently typical
for interacting fermions (relativistic Fermi liquid).

Thus, the second term in (8) describes the contributions
coming from quark and antiquark quasiparticles with occupa-
tion numbers n and n̄ respectively. The unity in the expression
1 −n′ − n̄′ corresponds to the vacuum fluctuations of quarks
and antiquarks. The last term in (8) is due to the interaction
of the quasiparticles. The presence of contributions coming
from antiparticles and the relativistic form of the dynam-
ics are the features which distinguish quark ensembles we
study from the Fermi liquids considered in condensed matter
physics. The first variation of the functional (8) with respect
to the particle (antiparticle) density leads (as it should) to the
energy of the quasiparticle:

δw

δn
= P0. (12)

We consider, first, the situation of zero temperature and
discuss some aspects of filling up the Fermi sphere by quarks.
Let us assume that the momentum distribution of quarks
(antiquarks) is determined by the following expressions taken
at the β → 0 limit:

n = [eβ(P0−μ) + 1]−1, n̄ = [eβ(P0+μ) + 1]−1, (13)

that is by the Fermi step function: n = 1, at P0 ≤ μ and n = 0
when P0 > μ. It is clear that for antiquarks n̄ = 0. The quark
density is determined by using the Fermi momentum:

ρ = γ P3
F

6π2 , ρ = Q0

V
, (14)

with the quark chemical potential that coincides with the
quasiparticle energy on the Fermi surface, as follows from
Eq. (12), i.e.

μ = [P2
F + M2

q (PF)]1/2. (15)

The group velocity of quasiparticles on the Fermi surface
vf = ∂P0/∂p||p|=PF is shown in Fig. 3 as a function of baryon

Fig. 3 The group velocity of quasiparticles vF on the Fermi surface.
The solid line describes the NJL model, the dashed one corresponds to
the KKB model, the dots show the data for the KKB model tuned to the
π -meson energy of Figs. 4, 5, 6, 7 and 8

Fig. 4 The compression module K in MeV

(quark) density (by definition, the baryon density is three
times smaller than the quark one ρB = ρ/3). A solid line
describes the NJL model, while a dashed one corresponds to
the KKB model. There are points for comparison that show
a version for the KKB model when the parameters are tuned
in such a way that the π -meson masses coincide in the NJL
and KKB models (a similar notation is used below in Figs.
4, 5, 6, 7, 8). The group velocity tending to unity in the
region of normal nuclear densities corresponds to the chiral
symmetry restoration when the induced quark mass tends
to zero. The group velocity turns to zero for quarks with
momenta |p| < 2G in the chiral limit in the KKB model. The
negative group velocities in the NJL model correspond to the
regions of instability (see below). The points in which the
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Fig. 5 The first sound velocity C1

Fig. 6 The slope factor at low temperatures 1
3π2NF in the thermal

conductivity expression at constant volume CV = 1
3π2NFT

Fig. 7 The factor F0 of the Landau Fermi-liquid theory

Fig. 8 Chemical potential in MeV

group velocity vanishes give rise to the peaks in the density
of states on the Fermi surface NF ,

NF = γ

∫
dp̃ δ(P0 − μ) = γ

2π2 PF P
0
F

(1 + F0)
−1,

F0 = Mq

PF

dMq

dPF

, (16)

where P0
F

= P0||p|=P
F
, NF = dρ/dμ. For more details on

how to determine the parameter F0, see below. The inter-
action term in the functional (8) vanishes in an ideal gas
and causes the derivative of the quark dynamical mass in
the Fermi momentum to turn to zero: dMq/dPF = 0. Let us
define the density of states of an ideal gas as

ÑF = γ /(2π2)PF P
0
F
,

then the relation (16) can be written in the form

NF = ÑF(1 + F0)
−1.

Another important characteristic is the compression coef-
ficient

K = 9ρ
dμ

dρ
= 3

P2
F

μ
(1 + F0). (17)

Figure 4 demonstrates the data for the NJL and KKB mod-
els. They are consistent with the specific values obtained for
a nuclear medium. One can also conclude that, in princi-
ple, these models admit a wide variety of equations of state
including sufficiently restrictive ones. The negative values
of the compression coefficient are not allowed and signal
the region of instability. The first sound velocity, which is
determined by the relation
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C2
1 = K

9 μ
= v2

F

3
(1 + F0), (18)

is shown in Fig. 5. When the baryon densities are somewhat
higher than the density of normal nuclear matter, the sound
velocity tends to its asymptotic value C1 = 1/

√
3 which is

a natural manifestation of the chiral symmetry restoration.
If the sound velocity of an ideal Fermi gas C̃2

1 = v2
F
/3 is

introduced in a way similar to the ÑF definition, then the
expressions (16), (18) can be endowed with the form whose
physical meaning is an equality of flow coming through the
Fermi sphere of quasiparticles of an (imaginary) ideal Fermi
gas and interacting Fermi liquid (that is, there basically is a
relativistic analog of the Luttinger theorem [30,31]),

NF C2
1 = ÑF C̃2

1 . (19)

The thermal conductivity at a constant volume and a low
temperature is given by the expression

CV = 1

3
π2NF T . (20)

Figure 6 shows the slope (the factor 1
3π2NF in Eq. (20),

NF = dρ/dμ), as a function of baryon/quark density, which
demonstrates how informative it could be to measure the
slope of a curve corresponding to the thermal conductivity.
Yet another important characteristic of the Fermi liquid is
defined by the second variational derivative, which for the
functional (8) develops only a scalar component

f0 = δ2w

δn2 = Mq

P0

δMq

δn
. (21)

For the Fermi liquid at zero temperature, in particular, we
have

f0 = 2π2

γ PF P0
F

Mq

PF

dMq

dPF

.

For example, in the NJL model

Mq

PF

dMq

dPF

= − PF

P0
F

1

I + π2m/(GM3
q )

,

I = ln
� + P0

�

PF + P0
F

− �

P0
�

+ PF

P0
F

.

where P0
� = P0||p|=�. In the KKB model

Mq

PF

dMq

dPF

= − M M2
q

M3
q + mP3

F

.

In particular, in the chiral limit (when m = 0) we have
(Mq/PF)(dMq/dPF) = −1. The collective oscillation
modes of the Fermi liquid, corresponding to the so-called

zero sound (the collisionless mode), are found by using the
parameter

F0 = ÑF f0 = Mq

PF

dMq

dPF

,

which is shown in Fig. 7. In particular, in the KKB model

F0 = − MM2
q

MM2
q + (P0

F
)2m

≥ −1.

The zero sound oscillations are known to be determined by
the solutions to the dispersion equation with a frequency
parameter s (for details concerning this notation, see the sec-
tion devoted to the polarization operator) of the form

F0 = s

2
log

s + 1

s − 1
− 1. (22)

When there is a repulsion in a system and the factor is positive
F0 > 0, the solutions to the dispersion equation s = λ + iη
describe continuous oscillations (η = 0). In the case of weak
attraction, when −1 < F0 < 0, the damped oscillations of
zero sound are possible with a purely imaginary frequency
(λ = 0), which is given by the solutions to the following
equation:

F0 + 1 = η arctan(1/η).

When the strong attraction is available and F0 < −1, the
solutions reside on a second sheet of the complex plane s
and describe the damped oscillations which are found from
the solution to the equation

F0 + 1 = η [−π + arctan(1/η)].
It should, however, be recalled that these states of a Fermi

liquid are unstable (as will be discussed below). It is hardly
possible to apply directly the consideration of zero sound
given above to the situation of interacting quarks and anti-
quarks under study, because here the contribution of vacuum
fluctuations of antiquarks, which form along with quarks
a chiral condensate, was completely ignored. On the other
hand, zero sound oscillations are known to be interpreted as
a bound state of a particle and hole in the vicinity of the Fermi
sphere. Therefore, the excitations in a Fermi liquid should be
described (in our case) by taking into account the interference
between the bound states of a quark and antiquark, as well as
of a quark and a hole of the Fermi sphere (the quantum num-
bers of that hole allows one to consider it as an anti-particle).
We are doing that on calculating the polarization operator.

Turning now to the chemical potential of quasiparticles
presented in Fig. 8 let us emphasize that it is seen from the
data for the NJL model that there is a region of occupied states
almost degenerate with respect to the chemical potential with
the vacuum chemical potential of a quasiparticle that quite
naturally corresponds to the vanishing Fermi momentum.
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In the pioneering papers of the NJL model there was a
discontinuity in the chemical potential values [32] unlike the
smooth curve in this plot.

Similarly, the chemical potential of occupied states in the
KKB model differs from that in vacuum by a small quantity
proportional to the quark current mass

dμ

dρ
= μ

ρ

v2
F

3

(
1 + Mq

PF

dMq

dPF

)
∼ m. (23)

All the states with momentum |p| < 2G are degenerate with
respect to the chemical potential in the chiral limit. We have
Mq = (4G2 − p2)1/2, P0 = 2G, when PF < |p| < 2G,
Mq = 0, P0 = |p| if |p| < PF , and |p| > 2G. Such a behav-
ior of the chemical potential is a consequence of a rapid
decrease of the dynamical quark mass with increasing Fermi
momentum [see also (15)]. It follows from Eq. (8) that the
Fermi sphere is being filled as though from within. Those
quarks with momenta smaller than the Fermi one |p| < PF

do not take part in forming a condensate. As a result, the quark
dynamical mass can only decrease with the Fermi momentum
increasing. This dynamical mass is independent of the quark
momentum in the NJL model because of the approxima-
tion assumed. This dependence should be taken into account
in a more realistic case as an analysis of the KKB model
shows.

It turns out that the pressure of some occupied states
degenerate in the chemical potential almost coincides with
that of vacuum (the pressure of a dilute Fermi gas; T = 0)

P = −dE

dV
= −E + μ ρ,

where E = E/V is the specific energy. Below we analyze
respective data in more detail including the situation with
nonzero temperature. The energy (and, hence, the pressure)
of the ensemble is a discontinuous functional of the quark
current mass (see [9–11]) in the KKB model. The integrands
in (8) are then estimated as follows:

p0 − P0 + 1

4G
M2 ∼ −G m2

p2 ,

and we find a linearly diverging integral for the specific
energy of ensemble

w ∼ −
∫

dp p2

2π2

G m2

p2 ,

despite the fact that the delta-like form factor in the momen-
tum space is the strongest regularizer. It is paradoxical that
any small value of the current mass m leads to the nega-
tive infinite energy of ensemble, while the expression w|m=0

is well defined in the chiral limit. Even more so, a similar
divergence occurs in the case of a delta-like form factor in
the coordinate space. This fact is concealed by introducing

the cutoff momentum � in the NJL model. Now it looks quite
sensible to consider the relative pressure of quark ensemble in
comparison with a (formally infinite) vacuum value because
of the singular character (mentioned above) of the ensemble
pressure in the KKB model. The pressure derivative in the
ensemble density has the form: dP/dρ = ρ dμ/dρ. There-
fore, one can conclude by using an estimate given in (23) that
the occupied states with momenta |p| < 2G are observed
to be degenerate with respect to the pressure (E = 2Gρ,
μ = 2G) in the chiral limit in the KKB model. The devia-
tions are proportional to the quark current mass beyond the
chiral limit.

Now, we are able to analyze some thermodynamic prop-
erties of a system and to consider, first, the pressure of the
quark ensemble in detail

P = −dE

dV
.

By definition, the volume derivative should be calculated
at the constant mean entropy, dS̄/dV = 0. Implementing
this constraint, one can, for example, extract the volume
derivative of the chemical potential, dμ/dV . However, this
approach cannot be implied because the mean charge conser-
vation might be broken. In fact, there is only one possibility
to satisfy both conditions by introducing two independent
chemical potentials for quarks and antiquarks separately. We
use a symbol μ introduced earlier for the quark chemical
potential, whereas the antiquark chemical potential is taken
with an opposite charge and is denoted by μ̄. Then, we have

n = 1

eβ (P0−μ) + 1
, n̄ = 1

eβ (P0+μ̄) + 1

for the quark and antiquark densities, respectively. Some
nonequilibrium states of quark ensemble could also be
described on this way (formally with a loss of covariance,
just similar to the electrodynamics as for the situation of
electron–positron gas). However, we are here interested only
in the special configuration when μ̄ = μ. The partial deriva-
tive of the specific energy dw/dV can be presented in the
following form:

dw

dV
=

∫
dp̃

(
dn

dμ

dμ

dV
+ dn̄

dμ̄

dμ̄

dV

) [
p0 cos θ − 2G ×

× sin(θ − θm)

∫
dq̃ sin(θ ′ − θ ′

m) (n′ + n̄′ − 1) F

]
.

Dealing with the definition of an induced quark mass (9) and
presenting the trigonometric factors via the quark dynamical
mass we find the ensemble pressure as

P = − E

V
− V 2Nc

∫
dp̃

(
dn

dμ

dμ

dV
+ dn̄

dμ̄

dμ̄

dV

)
P0. (24)
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The condition of mean charge conservation

dQ̄0

dV
= Q̄0

V
+ V 2Nc

∫
dp̃

(
dn

dμ

dμ

dV
− dn̄

dμ̄

dμ̄

dV

)
= 0,

(25)

gives the first equation that interrelates the derivatives dμ/dV
and dμ̄/dV . Here, a regularized expression for the mean
charge of quarks and antiquarks is assumed modulo respec-
tive vacuum contribution.

Implementing the condition of constant mean entropy
dS̄/dV = 0 in a similar way one can obtain the second
equation of the chemical potential derivatives system as fol-
lows:∫

dp̃
dn

dμ
ln

n

1 − n

dμ

dV
−

∫
dp̃

dn̄

dμ̄
ln

n̄

1 − n̄

dμ̄

dV
= S̄

2NcV 2 .

(26)

Substituting the expressions T ln n
1 − n = μ − P0 and

T ln n̄
1 − n̄ = −μ̄ − P0 into this equation and collecting

similar terms we attain the following equation
∫

dp̃
(

dn

dμ

dμ

dV
+ dn̄

dμ̄

dμ̄

dV

)
P0 = − S̄ T

2Nc V 2 − Q̄0 μ

2Nc V 2

if the condition μ̄ = μ and Eq. (25) are satisfied. Finally, we
have for the pressure

P = − E

V
+ S̄ T

V
+ Q̄0 μ

V
. (27)

Then the thermodynamic potential � should obey the fol-
lowing thermodynamic identity:

� = −PV = E − μ Q0 − T S, (28)

as it should.
At low temperatures the antiquark contribution is small

and the thermodynamic description can be approximately
developed by using the chemical potential μ only. If the
antiquark contribution becomes significant, the thermody-
namic description is more sophisticated and should obviously
include the chemical potential μ̄ with the additional condition
μ̄ = μ. Figure 9 shows the ensemble pressure P in MeV/fm3

as a function of the charge densityQ0/3V for various temper-
atures. The lowest curve is obtained at zero temperature. The
next curves and the ones following upwards correspond to
temperatures T = 10 MeV, T = 50 MeV (an upper curve)
with a step T = 10 MeV. Let us also remember that the
pressure of the vacuum for the NJL model was estimated in
[9–11] to be 40–50 MeV/fm3, which is quite consistent with
that obtained in the bag model. It was also demonstrated that
there is a region of instability within a certain interval of
the Fermi momenta generated by the anomalous behavior

Fig. 9 The ensemble pressure P (MeV/fm3) is shown as a function of
charge density Q0 at temperatures T = 0 MeV, …, T = 50 MeV with
spacing T = 10 MeV. The lowest curve corresponds to zero temper-
ature. The dashed curve shows the boundary of the liquid–gas phase
transition; see the text

Fig. 10 The fragments of the isotherms shown in Fig. 9, see the text.
The chemical potential μ (MeV) is plotted as a function of pressure P
in MeV/fm3. The top curve corresponds to the zero isotherm and down
with spacing 10 MeV till the isotherm 50 MeV (the lowest curve)

of pressure dP/dn < 0 (see also [33–36]). Figure 10 dis-
plays fragments of isotherms shown in Fig. 9 (but now in
different coordinates) in the form of a chemical potential as
a function of the ensemble pressure. A top curve is obtained
at zero temperature. The isotherms below are shown in steps
of 10 MeV. The lowest curve is obtained at a temperature
50 MeV. It is clearly seen from the figure that there are states
on the isotherms which are in thermodynamic equilibrium.
The pressure and chemical potential are the same for these
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Fig. 11 Isobars of NJL model. The pressure in MeV/fm3 is indicated
next to each curve. The vacuum pressure corresponds to approximately
50 MeV/fm3

states (see the characteristic Van der Waals triangle with inter-
secting curves). The equilibrium points obtained are shown
in Fig. 9 by a dashed curve. The points at which a dashed
curve intersects with an isotherm give a boundary for a gas–
liquid phase transition. The respective line P = const cuts
off nonequilibrium and unstable fragments of an isotherm
and describes a mixed phase. The critical temperature turns
out to be equal to Tc ≈ 46 MeV with the critical charge den-
sity Q̄0 ≈ 0.12 charge/fm3 for the above mentioned tuning
parameters. Figure 11 shows the isobars. The pressure next
to each curve is given in MeV/fm3. The vacuum pressure
corresponds to approximately ∼50 MeV/fm3. It is possible
to extrapolate isobars into the region of small charge den-
sities, however, it is not really necessary. The figure clearly
demonstrates the presence of dilute (a gas) and dense (a liq-
uid) phases in the vicinity of the vacuum isobar.

Figure 12 shows the quark dynamical mass Mq (in MeV)
as a function of the chemical potential μ (in MeV) for temper-
atures T = 0 MeV, T = 100 MeV in steps of T = 10 MeV.
The right-most curve corresponds to zero temperature. At
low temperatures, below 50 MeV, the quark dynamical mass
is a multi-ciphered function of the chemical potential (but the
discontinuous solution has been presented in the pioneering
papers).

Figure 13 shows the quark dynamical mass as a function of
temperature at small charge density Q0 ∼ 0. This picture is
easily recognizable in the context of the NJL model. It is the
latter that is implied in a scenario of chiral invariance restora-
tion under extreme temperatures higher than 100 MeV and
with a highly diluted quark ensemble. We have already noted
(see also [9–11]) that the momentum pθ , which corresponds
to the strongest quark–antiquark attraction d sin θ/dp = 0,

Fig. 12 The dynamical quark mass |Mq| (MeV) as a function of
chemical potential μ (MeV) at the temperatures T = 0 MeV, …,
T = 100 MeV with spacing T = 10 MeV. The right-most curve corre-
sponds to zero temperature

Fig. 13 The dynamical quark mass |Mq| (MeV) as a function of tem-
perature at the small value of charge density Q4

can be determined. For example, for the NJL model this
parameter is equal to

pθ = (Mq m)1/2. (29)

Its inverse value is given by the characteristic effective size
of a quasiparticle rθ = p−1

θ . From the behavior of the quark
dynamical mass as a function of temperature at small charge
densities (see Fig. 13) one can conclude that the quasiparticle
size grows with the energy increasing.

In [21–23] it was shown that if the quark chemical poten-
tial is defined as the energy necessary to add (remove) one
quasiparticle, μ = dE/dN , then the chemical potential in
vacuum coincides with the quark dynamical mass (see also
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(12), (15)). Therefore, it seems to be reasonable to consider a
QCD phase diagram by starting from this value of the chemi-
cal potential, though formally it can be taken smaller than the
quark dynamical mass. In particular, we exactly reproduce
the standard picture [24], [32] by taking the chemical poten-
tial equal zero. The results obtained allows one to conjecture
that the phase transition of the (partial) restoration of the chi-
ral invariance could already be realized in nature as a mixed
phase of physical vacuum and baryonic matter. An indirect
confirmation of this hypothesis can be seen in degenerate
excited states of some baryons (see, for instance, [37]). It is,
however, clear that the data presented (in particular, on the
temperature and density of a critical point position) should
be understood as just estimates. The critical temperature of
the gas–liquid transition for nuclear matter extracted from
experiment is estimated to be about 20 MeV.

(Let us mention here that the hadronization temperature as
extracted from the RHIC and LHC data analysis in the frame-
work of statistical hadronization models looks like 165 MeV.)

In addition, here (at T = 0) a gas component possesses
the nonzero density of order of 0.01 of the normal nuclear
density, whereas the observed value should correspond to
physical vacuum, i.e., to zero baryon density. It should be
noted that although such an uncertainty is inherent in the
other predictions of the chiral symmetry restoration phase
transition which are widely discussed in many papers, they
are somewhere around 2–6 normal nuclear matter densities.

3 Polarization operator

Returning to the discussion of zero sound and excitations
of a chiral condensate we would like also to recall that this
knowledge is necessary for a more consistent analysis of the
transition gas–liquid layer. To this end, we will need to know
a polarization operator of the form

��(p, q) =
∫

dk

(2π)4 i π�(k + p, k − q), (30)

where

π�(k + p, k − q) = Tr{S(k + p)�S(k − q)�},
is a respective density of the polarization operator in the chan-
nels � = 1, iγ5, γμ, γ5γμ with the Green function of quark
with the dynamical mass Mq

S(k) = 1

k̂ + μ̂ − Mq(k)
, (31)

μ̂ = μγ 0, where p, q are the incoming and outgoing external
momenta of the quark quasiparticles. It will be enough for
our purposes to consider the quasiparticles with momenta

Fig. 14 Energies (in MeV) of π (dashed line) and σ (solid line) mesons
as a function of momentum Q/2 (in MeV) (T = 0) for a gas of low
baryon density such that PF ∼ 130 MeV

p = q = Q/2 in the center of mass frame. We analyze
pseudoscalar and scalar channels, for which one can deduce

�π,σ = Nc

∫
dk̃F(k)

[
a+b ε

ε2−(E p+Eq)
2 + c

ε−E p+Eq

]
,

a =
(
E p + Eq

)[
2−n p−nq

][
Q2/4−k2 ∓ M pMq

E pEq
−1

]
,

b =
[
nq − n p

] [
Q2/4 − k2 ∓ M pMq

E pEq
− 1

]
,

c = [n p − nq]
[
Q2/4 − k2 ∓ M pMq

E pEq
+ 1

]
, (32)

where ε = p0 − q0 is the transferred energy, M p = Mq( p),
E p = [ p2 + M2

q ( p)]1/2, the quantity F(k) is a form factor,
and for the kinematics chosen p = k + Q/2 (here n p is the
occupation number for a quasiparticle with momentum p). In
particular, at zero temperature we have the Fermi step: n p =
n(E p−μ). A similar notation is also used for a quasiparticle
with momentum q = k − Q/2.

The first term in Eq. (32) corresponds to the quark and anti-
quark contributions, whereas the second one comes from the
quark and hole configuration. It is easy to see that at F(k) =
δ(k) (in the KKB model) we have cubic dispersion relations
to determine the bound states: 1−2G �π,σ (ε, Q) = 0. As an
example, Fig. 14 shows the energies (in units of MeV) calcu-
lated of π (dashed line) and σ (solid line) mesons as functions
of the momentum Q/2 (in units of MeV) at zero temperature
for the gas with small baryon density corresponding to the
Fermi momentum PF ∼ 130 MeV. The region of degener-
acy, seen in Fig. 14 at low quark momenta, is a consequence
of the above discussed fact that the Fermi sphere is filled
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Fig. 15 Energies (in MeV) of π (dashed line) and σ (solid line) mesons
as a function of baryon density (T = 0). The branch corresponding to
a bound quark–hole state is shown by dots; Qq = −Qh = 50 MeV

from the inside, and quarks with momenta smaller than PF

do not participate in forming the quark dynamical mass. Such
a behavior is not observed in the NJL model because of the
approximation adopted (the quark mass is independent of the
momentum). Figure 15 shows the energies (in units of MeV)
of π (dashed line) and σ (solid line) mesons as the functions
of the baryon density (T = 0). The dots indicate a branch
corresponding to the quark-hole bound state which appears
to be degenerate for π and σ mesons. Just these branches cor-
respond to the third additional root of the dispersion equation
mentioned above, albeit so that there are only two roots (see
the discussion of the NJL model). To be specific, the quark
momentum is assumed to be 50 MeV larger than the Fermi
one but the hole momentum is 50 MeV smaller than the latter
in this example. As follows from Eq. (32), the polarization
operator in the NJL model is defined by integrating over the
running quark momentum k and is represented as a superpo-
sition of branches of the KKB model, which has already been
mentioned in the introduction. The most significant contri-
butions (for the kinematics we chose) are those coming from
the terms denoted as a and c in Eq. (32). Integrating over
the angle (it is more convenient to express the final formula
by going to a nonsymmetric integration point; the correc-
tions become negligibly small) one can obtain (at T = 0) the
following results:

�π,σ = Aπ,σ + Bπ,σ ,

Aπ,σ =
�PF∫

dk k

2π2Q

[
(E+ − E−)

(
1 + E+ + E−

2Ek

)
−

−Q2−ε2+2(M2
q ∓ M2

q )

2Ek
ln

(
ε+Ek+E+
ε+Ek+E−

ε−Ek−E+
ε − Ek−E−

)]
,

Bπ,σ =
PF∫

0

dk k

2π2Q

[
(E+ − E−)

(
1 − E+ + E−

2Ek

)
+

+Q2−ε2+2(M2
q ∓ M2

q )

2Ek
ln

(
ε−Ek+E+
ε−Ek+E−

ε+Ek−E+
ε+Ek−E−

)]
,

where E± = [(k ± Q)2 + M2
q ]1/2 and Ek = [k2 + M2

q ]1/2.
At small momentum Q the component Bσ is transformed

into Eq. (22) with the parameter s = EFε/(kFQ). The first
component Aπ,σ results from the contribution coming from
a quark–antiquark pair, whereas in the case of the second
one Bπ,σ arises due to the coupling of quark and hole resid-
ing in the vicinity of the Fermi sphere. It should be noted
that for a quark ensemble we consider the medium proper-
ties which are mainly governed by the term Aπ,σ respon-
sible for the quark–antiquark condensate, contrary to what
we have in condensed matter physics, where the dominant
contribution, as is well known, is given by Bπ,σ . Therefore,
the results obtained exclusively by using an analogy with the
condensed matter physics should be taken with a grain of
salt. In particular, in the present paper we have analyzed in
detail a situation with the zero sound description taken as an
example illustrating just this point. The zero sound would
represent in itself the highly damped oscillations described
by the only scalar parameter F0, while with no an antiquark
present. A more accurate analysis shows that, for example,
there is a stable branch of quark and hole excitations in the
Fermi sphere in addition to a paired quark–antiquark state
in the KKB model. We observe a regular mass convergence
for π and σ mesons when the baryon density increases by
performing a numerical integration in the NJL model. This
effect is clearly related to the restoration of chiral symmetry.
The influence of a bound quark-hole state in the Fermi sphere
turns out to be insignificant. For instance, for the densities of
the order of normal nuclear matter the dispersion law changes
by a few MeV when the quark and hole momentum differs
more than 200 MeV, but there are no damped oscillations as
in the KKB model.

One of the drawbacks of the models studied so far is
the lack of quark confinement that is understood here sim-
ply as the impossibility to observe a single particle state
with a regular (real) dispersion law. We see formally that
one quasiparticle can freely propagate, indeed. But adding
just another quasiparticle can dramatically change the pic-
ture due to the existence of a bound channel. For example,
in the KKB model the bound states in scalar, pseudoscalar,
vector, and axial-vector channels appear at any quasiparticle
momenta (details can be found in [38–40]). In particular, the
bound state energy, obtained by using the dispersion equation
1 − 2G � = 0, has the form

ε2
π,σ = (E p + Eq)

2− 2G
E p + Eq

E pEq
(E pEq ± M pMq − pq),
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in the π and σ channels (an upper sign corresponds to the
pseudoscalar channel). The first term in this expression is
the energy of free particle motion. The second one is strictly
positive at any momenta p and q and plays a role of binding
energy in π and σ channels (only in the configuration of q =
p the binding energy vanishes for a scalar channel). Similarly,
one can show that a quark and antiquark are always coupled in
vector and axial-vector channels, i.e. the scattering matrix is
always singular except for a tensor channel where it is trivial
because of the initial interaction Hamiltonian, which is taken
as a product of two color currents. Similar bound states exist
in the diquark channel. As a consequence, the states with any
number of quark quasiparticles turn out to be the bound states
in the channels we have just mentioned. The same behavior
is observed in the NJL model where the bound states appear
for the quarks with momenta somewhat lower than the cutoff
momentum, i.e. the scattering matrix is also singular within
this momentum interval as in the KKB model. It seems the
bound states appear rather due to the fermion correlations
than the physical influence of a field that is familiar in the
quantum electrodynamics. Then, in order to understand what
may take place beyond the cutoff momentum one apparently
has to study the appropriate nonlocal models.

4 Transition layer between gas and liquid

The concept of a mixed phase of physical vacuum and bary-
onic matter would receive a substantial confirmation if we are
able to demonstrate the existence of the boundary (transition)
layer where a transformation of the quark ensemble from one
aggregate state to another takes place. As was argued above
the indicative characteristic to explore a homogeneous phase
(at finite temperature) is the mean charge (density) of the
ensemble. All the other characteristics, for example, a chiral
condensate, dynamical quark mass, etc. can be reconstructed
if one knows the ensemble mean charge. So, here we ana-
lyze a specific case of the surface (transition) layer at zero
temperature.

We assume that the quark ensemble parameters in a
gaseous phase are approximately the same as those at zero
charge ρg = 0, i.e. as in vacuum (minor differences
in pressure, chemical potential, and quark condensate are
neglected). The dynamical quark mass develops here the
maximal value, and it is M = 335 MeV for the parame-
ter choice standard for the NJL model. Then, as the Van der
Waals diagram shows, a liquid phase, being in equilibrium
with a gas phase, gains the density ρl = 3×0.185 charge/fm3

(by a reason which becomes clear below we correct it to take
the value ρl = 3 × 0.157 charge/fm3). The detached factor 3
here links again the magnitudes of quark and baryon matter

densities. The quark mass is approximately
∗
M≈ 70 MeV in

this phase. Hereafter we focus on describing two adjoining

semi-infinite layers (i.e. assuming a plane symmetry of the
corresponding one-dimensional problem).

The previous experience teaches that an adequate descrip-
tion of heterogeneous states can be reached with the mean
field approximation [41,42]. In our particular case it means
making use of the corresponding effective quark–meson
Lagrangian [43–45] (functional of the Ginzburg–Landau
type)

L = −q̄ (∂̂ + M) q − 1

2
(∂μσ)2 −U (σ ) − 1

4
FμνFμν

−m2
v

2
VμVμ − gσ q̄q σ + igv q̄ γμ q Vμ, (33)

where

Fμν = ∂μVν − ∂νVμ, U (σ ) = m2
σ

2
σ 2 + b

3
σ 3 + c

4
σ 4,

and σ is the scalar field, Vμ is the field of vector mesons, mσ ,
mv are the masses of scalar and vector mesons and gσ , gv

are the coupling constants of the quark–meson interaction.
TheU (σ ) potential includes the nonlinear σ field interaction
terms up to the fourth order, for example. For the sake of
simplicity we do not include the contributions coming from
the pseudoscalar and axial-vector mesons.

The meson component of such a Lagrangian should be
self-consistently treated by considering the corresponding
quark loops. Here we do not see any reason to go beyond
the well elaborated and reliable one loop approximation (33)
[43–45], although recently considerable progress has been
reached in scrutinizing the non-homogeneous quark conden-
sates by applying the powerful methods of exact integration
[46–51]. Here we believe it is more practical to adjust phe-
nomenologically the effective Lagrangian parameters based
on the transparent physical picture. It is easy to see that han-
dling (33) in one loop approximation we arrive, in actual fact,
at the Walecka model [52–54] but adopted for the quarks. In
what follows we are working with the designations of that
model and we hope that it does not lead to misunderstandings.

In the context of our paper we propose to interpret Eq.
(33) in the following way. Each phase might be considered,
in a sense, with regard to another phase as an excited state
which requires the additional (apart from a charge density)
set of parameters (for example, the meson fields) for its com-
plete description, and those are characterizing the measure of
deviation from the equilibrium state. Then the crucial ques-
tion becomes whether it is possible to adjust the parameters of
the effective Lagrangian (33) to obtain the solutions in which
the quark field interpolates between the quasiparticles in the
gas (vacuum) phase and the quasiparticles of the filled-up
states. For all that, the density of the filled-up state ensemble
should asymptotically approach the equilibrium value of ρl
and should turn to the zero value in the gas phase (vacuum).
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The scale inherent in this problem may be assigned by one
of the masses referred to in the Lagrangian (33). In particular,
we bear in mind the dynamical quark mass in the vacuum M .
Besides, there are another four independent parameters in the
problem and in order to compare them with the results of a
study of the nuclear matter we employ the form characteristic
for the (nuclear) Walecka model,

Cs = gσ

M

mσ

, Cv = gv
M

mv
, b̄ = b

g3
σ M

, c̄ = c

g4
σ

.

Parameterizing the potential U (σ ) as bσ = 1.5 m2
σ (gσ /M),

cσ = 0.5 m2
σ (gσ /M)2 and we arrive at the sigma model

whereas the choice b = 0, c = 0 results in the Walecka
model. As to standard nuclear matter, application of the
parameters b and c demonstrates the vital model dependent
character and they are quite different from the parameter val-
ues of the sigma model. Truly, in that case their values are also
regulated by additional requirement of an accurate descrip-
tion of the saturation property. On the other hand, for the
quark Lagrangian (33) we could intuitively anticipate some
resemblance with the sigma model and, hence, could intro-
duce two dimensionless parameters η and ζ in the form of
b = η bσ , c = ζ 2 cσ , which characterizes some fluctuations
of the effective potential. Then the scalar field potential is
presented as follows:

U (σ ) = m2
σ

8

g2
σ

M2

(
4
M2

g2
σ

+ 4
M

gσ

η σ + ζ 2σ 2
)

σ 2.

The meson and quark fields are determined by solving the
following system of stationary equations:

� σ − m2
σ σ = b σ 2 + c σ 3 + gσ ρs,

� V − m2
v V = −gv ρ, (34)

(∇̂+ ∗
M) q = (E − gv V ) q,

where
∗
M= M + gσ σ is the running value of the dynamical

quark mass, E stands for the quark energy and V = −iV4.
The density matrix describing the quark ensemble at T = 0
has the form

ξ(x) =
PF∫

dp̃ qp(x) q̄p(x),

in which p is the quasiparticle momentum and the Fermi
momentum PF is defined by the corresponding chemical
potential. The densities ρs and ρ at the right hand sides of
Eq. (34) are by definition

ρs(x) = Tr{ξ(x), 1}, ρ(x) = Tr{ξ(x), γ4}.
Here we confine ourselves to the Thomas–Fermi approx-

imation while describing the quark ensemble. Then the den-
sities which we are interested in are given with some local
Fermi momentum PF(x) as

ρ = γ

PF∫
dp̃ = γ

6π2 P3
F ,

ρs = γ

PF∫
dp̃

∗
M
E

=

= γ

4π2

∗
M P2

F

{(
1+λ2

)1/2

− λ2

2
ln

[(
1+λ2

)1/2+1(
1+λ2

)1/2−1

]}
,

(35)

where γ is a quark gamma-factor which for one flavor is

γ = 2Nc, E = (p2 + ∗
M

2
)1/2 and λ = ∗

M /PF. Under the
assumption adopted the ensemble chemical potential is con-
stant and, therefore, the local value of the Fermi momentum
is defined by the running value of dynamical quark mass and
vector field as

μ = M = gv V + (P2
F + ∗

M
2
)1/2. (36)

Now we should tune the Lagrangian parameters in Eq.
(33). For asymptotically large distances (in a homogeneous
phase) we may neglect the gradients of scalar and vector
fields, and the equation for the scalar field of the system (34)
leads to the first equation that relates the parameters Cs, Cv,
b̄, c̄ by

M
2
(

∗
M − M)

C2
s

+ b̄ M (
∗
M − M)2 + c̄(

∗
M − M)3 = −ρs.

(37)

The vector field asymptotically is given by the ensemble den-
sity V = C2

v ρ/(gvM2). The second equation derived from
the relation (36) for the chemical potential looks like

M = C2
vρ

M2 + (P2
F + ∗

M
2
)1/2. (38)

If we know the liquid density we obtain the Fermi momen-
tum (PF = 346 MeV) from (35). Applying the identities
(37), (38) we have for the particular case b = 0, c = 0 the
results C2

s = 25.3, C2
v = −0.471, i.e. the vector compo-

nent C2
v is small (compared to C2

s ) and acquires a negative
value that is unacceptable. Apparently, it looks necessary to
abandon the contribution coming from the vector field or to

reduce the dynamical quark mass
∗
M up to the value which

retains the identity (38) valid with positive C2
v or even zero

value. In the gaseous phase the dynamical quark mass can
also be corrected to a value larger than the vacuum value.
It is clear that in the situation of the liquid with the density
ρl = 3 × 0.185 ch/fm3 the dynamical quark mass should
coincide (or exceed) M = 346 MeV in the gaseous phase.
However, here we correct the liquid density (as was argued
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above) to decrease its value up to ρl = 3 × 0.157 ch/fm3,
which is quite acceptable in the nucleation capacity. In fact,
this possibility can be simply justified by another choice of

the NJL model parameters. Thus, we obtain at
∗
M= 70 MeV

and b = 0, c = 0 the result that C2
s = 28.4, C2

v = 0.015, i.e.
we have a small but positive value for the vector field coeffi-
cient. At the same time, aiming here to estimate the surface
tension effects only we do not strive for the precise fit of
the parameters. In the Walecka model these coefficients are
C2

s = 266.9, C2
v = 145.7 (b = 0, c = 0). Moreover, there

is another parameter set with C2
s = 64, C2

v ≈ 0 [55–59] but
it is rooted in the essential nonlinearity of the sigma-field
due to the nontrivial values of the coefficients b and c. The
option (formally unstable) with negative c (b) has also been
discussed.

The coupling constant of scalar field is fixed by the stan-
dard (for the NJL model) relation between the quark mass
and the π -meson decay constant gσ = M/ fπ (we put
fπ = 100 MeV) although there is not any objection to treat
this coupling constant as an independent parameter. As a
result of the whole agreement we have for the σ -meson mass
mσ = gσ M/Cs. In principle, we could even fix the σ -meson
mass and coupling constant gσ , but all relations above men-
tioned lead eventually to quite suitable values of the σ -meson
mass as will be demonstrated below. The vector field plays,
as we see, a secondary role because of the small magnitude
of the constant Cv. Then taking the vector meson mass as
mv ≈ 740 MeV (a slightly smaller value than the mass of
the ω meson because of simple technical reasons only) we
calculate the coupling constant of the vector field from the
relation similar to the scalar field mv = gv M/Cv. Amaz-
ingly, its value turns out to be steadily small being compared
to the value characteristic for the NJL model, gv = √

6gσ .
However, at the values of constantCv which we are interested
in it is very difficult to maintain the reasonable balance, and
to be specific in this paper we prefer to choose the mas-
sive vector field. Actually, it is unessential because we need
this parameter (as we remember) to estimate the vector field
strength only.

The key point of our interest here is the surface tension
coefficient [55–59] which can be defined as

us = 4π r2
o

∞∫

−∞
dx

[
E(x) − El

ρl
ρ(x)

]
. (39)

The parameter ro will be discussed in the next section on con-
sidering the features of the quark liquid droplet, and for the
present we would like to notice only that for the parameters
considered its magnitude for Nf = 1 is around ro = 0.79
fm. Recalling the factor 31/3 which connects the baryon and
quark numbers, we find the magnitude (̃ro = 31/30.79 ≈
1.14 fm) in full agreement with the magnitude standard

for the nuclear matter calculations (in the Walecka model)
r̃o = 1.1–1.3 fm.

In order to proceed we calculate E(x) in the Thomas–
Fermi approximation as

E(x) = γ

PF(x)∫
d̃p [p2+ ∗

M (x)]1/2 +

+ 1

2
gv ρ(x) V (x) − 1

2
gσ ρs(x) σ (x).

To give some idea for the ‘setup’ prepared we present
here the characteristic parameter values for some fixed b and
c with ρl = 3 × 0.157 ch/fm3. In the liquid phase they are
∗
M= 70 MeV (PF = 327 MeV) and el = 310.5 MeV (the
index l stands for a liquid phase and e(x) = E(x)/ρ(x)
defines the density of the specific energy). Both relations (37)
and (38) are obeyed by this state. There exists a solution with

larger value of quark mass
∗
M= 306 MeV, (PF = 135 MeV)

(we have faced a similar situation in the first section dealing
with the gas of quark quasiparticles) and e = 338 MeV
∼ eg (eg is the specific energy in the gas phase) that satisfies
both equations as well. The specific energy of this solution
appears to be larger than the specific energy of the previous
solution. It is also worthwhile to mention the existence of an
intermediate state corresponding to the saturation point with

the mass
∗
M= 95 MeV, (PF = 291 MeV) and e = 306 MeV.

Obviously, it is the most favorable state with the smallest
value of specific energy (and with the zero pressure of quark
ensemble), and the system can fall into this state only in
the presence of a significant vector field. This state (already
discussed in the first section) corresponds to the minimal
value of chemical potential (T = 0) and can be reached at
the densities typical for the normal nuclear matter. However,
Eq. (38) is not valid for this state.

Two other parameters, η, ζ , are fixed by looking through
all the configurations in which the solution of the equation
system (34) with a stable kink of the scalar field does exist and
describes the transition of quarks from the gaseous phase to
the liquid one. First, it is reasonable to scan the η, c (ζ = c η)-
plane, in order to identify the domain in which the increase
of specific energy E − El ρ/ρl ≤ 0 is revealed at running
through all possible states which provide the necessary transi-
tion (without taking into account the field gradients). In prac-
tice one needs to follow a simple heuristic rule. The state with
PF ∼ 1 MeV (i.e. e and the corresponding ρ) and the state of
the characteristic liquid energyEl (together withρl ) should be
compared while scanning the Lagrangian parameters η and
c. Just the domain in which they are commensurable could
provide us with the solutions which we are interested in, and
Fig. 5 shows its boundary. The curve could be continued
beyond the value η = 2.5, but the values of corresponding
parameter η are unrealistic and not shown in the plot.
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Fig. 16 The domain of the η, c (ζ = c η) plot in which an increase
of specific energy occurs; see the text. The dots represent a stable kink.
The star shows the position of canonical (chiral) kink; see the text

We calculate the solution of equation system (34) numer-
ically by the Runge–Kutta method with the initial conditions
σ(L) ≈ 0, σ ′(L) ≈ 0 imposed at the large distance L � t ,
where t is a characteristic thickness of transition layer (about
2 fm). Such a simple algorithm appears to be quite suitable if
the vector field contribution is considered as a small correc-
tion (this just takes place in the situation under consideration)
and is presented as

V (x) = 1

2mv

L∫

−L

dz e−mv|x−z| gv ρ(z),

where the charge (density) ρ is directly defined by the scalar
field. We considered the solutions including the contribution
of the vector field as well and the corresponding results con-
firm the estimates obtained.

A rather simple analysis shows that interesting solutions
are located along the boundary of discussed domain. Some
of those are depicted in Fig. 16 as the dots. Figure 17 shows
the stable kinks of the σ field with the parameter c = 1.1 for
two solutions with η ≈ 0.977 (mσ ≈ 468 MeV) (solid line)
and η ≈ 1.813 (mσ ≈ 690 MeV) (dashed line). For the sake
of clarity we consider the gas (vacuum) phase is on the right.
Then the asymptotic value of σ field on the left hand side

(σ ≈ 80 MeV) corresponds to
∗
M= 70 MeV. The thickness

of the transition layer for the solution with η ≈ 0.977 is t ≈ 2
fm, whereas for the second solution we have t ≈ 1 fm.

Characterizing the whole spectrum of the solutions obtain-
ed we should mention that there exist other more rigid (chiral)
kinks, which correspond to the transition into the state with
the dynamical quark mass changing its sign, i.e. M → −M .
In particular, for the kink with the canonical parameter values
η = 1, c = 1 is clearly seen (marked by the star in Fig. 16)

Fig. 17 The stable kink solutions with c = 1.1, the solid line corre-
sponds to η ≈ 0.977 (mσ ≈ 468 MeV) and the dashed line corresponds
to η ≈ 1.813 (mσ ≈ 690 MeV), x is given in the units of f m and σ is
given in MeV

Fig. 18 The surface tension coefficient us in MeV as a function of the
parameter c (ζ = c η) for the curve of stable kinks (with η ≤ 1.2)

and its surface tension coefficient is about 2mπ (mπ is the π -
meson mass). The most populated class of solutions consists
of those having metastable character. The system comes back
to the starting point (after an evolution) pretty rapidly, and
usually theσ field does not evolve to such an extent as to reach
the asymptotic value (which corresponds to the dynamical

quark mass in the liquid phase
∗
M= 70 MeV). Switching

on the vector field changes the solutions insignificantly (for
our situation with small Cv it does not exceed 2 MeV in the
maximum).

The surface tension coefficient us in MeV for the curve
of stable kinks with parameter η ≤ 1.2 as a function of the
parameter c (ζ = c η) is depicted in Fig. 18. The σ -meson
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mass at c ≈ 0 is mσ ≈ 420 MeV and changes smoothly up
to the value mσ ≈ 500 MeV at c ≈ 1.16 (the maximal value
of the coefficient c beyond which the stable kink solutions
are not observed). In particular, mσ ≈ 450 MeV at c = 1.
Two kink solutions with c = 1.1 for η ≈ 0.977 and for
η ≈ 1.813 (shown in Fig. 17, and the second one is not
shown in Fig. 18) have the tension coefficient values us ≈ 35
MeV and us ≈ 65 MeV, respectively. The maximal value of
the tension coefficient for the normal nuclear matter does not
exceed us = 50 MeV. The nuclear Walecka model claims the
value us ≈ 19 MeV [55–59] as acceptable and calculable.
The reason to have this higher value of the surface tension
coefficient for the quarks is rooted in the different values
of the mass deficit. Indeed, for nuclear matter it does not

exceed
∗
M≈ 0.5M albeit so that more realistic values are

considered around
∗
M≈ 0.7M and for the quark ensemble

the mass deficit amounts to
∗
M≈ 0.3M . We are also able

to estimate the compression coefficient of the quark matter
K , which occurs significantly larger than the nuclear one.
Actually, we see a quite smooth analogy between the results
obtained and the results of the bag soliton model [60–63].
The thermodynamic treatment developed in the present paper
allows us to formulate the adequate boundary conditions for
the bag in physical vacuum and to diminish considerably
the uncertainties in searching the true soliton Lagrangian.
We believe, and it was also shown here, that to single out one
soliton solution among others (including even those obtained
by the exact integration method [46–51]), which describes the
transitional layer between two media, is not an easy problem
if the boundary conditions above formulated are not properly
imposed.

5 Droplet of quark liquid

The results of the previous sections have led us to put for-
ward the challenging question about the creation and prop-
erties of finite quark systems or the droplets of quark liquid
which are in equilibrium with the vacuum state. Thus, as a
droplet we imply the spherically symmetric solution of the
equation system (34) for σ(r) and V (r) with the obvious
boundary conditions σ ′(0) = 0 and V ′(0) = 0 in the origin
(the primed variables denote the first derivatives in r ) and
rapidly decreasing at large distances, σ → 0, V → 0, when
r → ∞.

A quantitative analysis of similar nuclear physics models
which includes the detailed tuning of parameters is usually
based on the comprehensive fitting of the available experi-
mental data. This way is obviously irrelevant in studying the
quark liquid droplets. This global difficulty dictates the spe-
cific tactics of analyzing. We propose to start, first of all, with
selecting the parameters which could be worthwhile to play

Fig. 19 σ field (MeV) as a function of the distance r (fm) for several
solutions of the equation system (34) which are characterized by the net
quark number Nq written to the left of each curve

the role of physical observables. Naturally, the total baryon
number which phenomenologically (via factor 3) related to
the number of valence quarks in an ensemble, is a reason-
able candidate for this role. Besides, the density of the quark
ensemble ρ(r), the mean size of the droplet R0, and the thick-
ness of the surface layer t looks suitable for such an analysis.

It is argued above that the vector field contribution is neg-
ligible because of the small value of the coefficient Cv com-
pared to the Cs magnitude, and we follow this conclusion
(or assumption) albeit so that we understand it is scarcely
justified in the context of a finite quark system. Thus, we
put gv = 0, V = 0 in what follows and it simplifies all the
calculations enormously.

Figure 19 shows the number of solutions (σ field in MeV)
to the system (34) at Nf = 1 and Fig. 20 presents the corre-
sponding distributions of ensemble density ρ (ch/fm3). The
parameters Cs, Cv, b, and c are derived by the same algo-
rithm as in the previous section, i.e. the chemical potential of
the quark ensemble M = 335 MeV (and σ → 0) is fixed at
spatial infinity. The filled-up states (of a liquid) are charac-

terized by the parameters
∗
M= 70 MeV, ρ0 = ρl = 3×0.157

ch/fm3. The σ -meson mass and the coupling constant gσ are
derived at fixed coefficients η and ζ , and they just define the
behavior of the solutions σ(r), ρ(r), etc. The magnitudes of
the functions σ(r) and ρ(r) at the origin are not strongly cor-
related with the values characteristic for the filled-up states
and are practically determined by solving the boundary value
problem for system (34). In particular, the solutions presented
in Fig. 19 have been obtained with the running coefficient η

at ζ = η. The most relevant parameter (instead of η) from
the physical view point is the total number of quarks in the
droplet Nq (as discussed above) and it is depicted to the left

of each curve. (The variation of
∗
M , ρ0 and fπ could be con-
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Fig. 20 Distribution of the quark density ρ (ch/fm3) for the corre-
sponding solutions presented in Fig. 20

Table 1 The results of fitting the Fermi distribution with Nf = 1, ρ̃0
(ch/fm3), R0, t , r0 (fm), b (fm−1), mσ (MeV)

Nq ρ̃0 R0 b t r0 mσ η

15 0.34 1.84 0.51 2.24 0.74 351 0.65

43 0.43 2.19 0.52 2.28 0.75 384 0.73

159 0.46 4.19 0.52 2.29 0.77 409 0.78

303 0.47 5.23 0.52 2.29 0.78 417 0.795

529 0.47 6.37 0.52 2.27 0.79 423 0.805

742 0.47 7.15 0.52 2.27 0.79 426 0.81

sidered as well instead of the two mentioned parameters η

and ζ .)
Analyzing the full spectrum of solutions obtained by scan-

ning, one can reveal a recurrent picture (at a certain scale)
of kink droplets which are easily parameterized by the total
number of quarks Nq in a droplet and by the density ρ0.
These characteristics are obviously fixed at completing the
calculations. The property which allows us to single out these
solutions is related to the value of droplet specific energy (see
below).

Table 1 exhibits the results of fitting the density ρ(r) with
the Fermi distribution

ρF(r) = ρ̃0

1 + e(R0−r)/b
, (40)

where ρ̃0 is the density in the origin, R0 is the mean size
of droplet, and the parameter b defines the thickness of the
surface layer t = 4 ln(3)b. Besides, the coefficient r0, which
is absorbed in the surface tension coefficient (39), the σ -
meson mass, R0 = r0N

1/3
q , and the coefficient η at which all

other values have been obtained are also presented in Table 1.

Radial distance (10-13 cm)

 e ytisned egr ahC
–

10
19

mc/b
moluoc

3
Fig. 21 A summary of the approximate charge density distributions
found for various nuclei by studying the electron scattering (R. Hofs-
tadter)

The curves plotted in Fig. 19 and results of Table 1 justify
us to conclude that the density distributions at Nq ≥ 50 are
in full agreement with the corresponding data typical for the
nuclear matter. The thicknesses of the transition layers in
both cases are also similar and the coefficient r0 with the
factor 31/3 included is in full correspondence with r̃0. The
values of the σ -meson mass in Table 1 look quite reasonable
as well.

Obviously, we are unable to tune our model, unlike the
Walecka one, by drawing the experimental data on the quark
drops. However, the subject is getting increasingly interest-
ing because of possible astrophysical applications in study-
ing the anomalous quark stars [55–59]. However, there is
the possibility to trace some qualitative objective observa-
tions, in particular, the central density of drops is getting
smaller with the quark quasiparticles number in the drop
decreasing. Meanwhile, we know from the experiments that
a nuclear matter develops an opposite tendency of a certain
increase of nuclear density that becomes quite noticeable
(factor 2.5) for helium and is much larger (factor 10) than
the standard nuclear density for hydrogen. Figure 21 gives
a summary of the approximate charge density distributions
studied by R. Hofstadter in electron scattering off various
nuclei.

Obviously, we understand that the Thomas–Fermi approx-
imation which is used for evaluating becomes hardly justified
at small number of quarks, and we should deal with the solu-
tions of the complete equation system (34). However, one
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Fig. 22 The σ and π fields in units of Fπ . Curves 1 and 2 show σ , 3
and 4 show π , 5 and 6 show σ 2 + π2, (curves 1 and 3 with vector and
axial-vector fields contributions included; see Ref. [64])

very encouraging hint comes from the chiral soliton model
of nucleon [64], where it has been demonstrated that solving
this system (34) the good description of nucleon and � can
be obtained.

In a sense we consider analyzing just a three quark sys-
tem as a central result of our paper. Looking at Fig. 1 of
Ref. [64] (we represent it here as Fig. 22) we see that the
curve describing the behavior of the scalar field at large dis-
tances reaches its minimal value (according to the sign choice
done in [64] it corresponds to the largest quark mass of order
300 MeV). It looks like it that by approaching the center
of baryon, the chiral symmetry is partially restored and the
scalar field in the region of ∼ 0.5 fm disappears. One of the
possible scenarios for solving the system of equations (34)
could be a variant in which the scalar field reaches maxi-
mal (zero) value (with a zero value of the derivative over
coordinate) at this point (or the center of the baryon). Then
a scalar field can, in principle, smoothly approach its min-
imal value coming to the center of the baryon. It allows us
to conclude that we could deal with an “ordinary” quark
with positive (zero) mass for the solutions of such a type.
However, the baryon is getting a large width (size) in this
scenario. There is another type of solutions, in which the
“speed” of passing by the point 0.5 fm is not getting slower.
In fact such a situation could be realized by doing a chiral
rotation where a quark inside a baryon falls in the metastable
region of negative quark masses. Such a solution develops an
already quite suitable width of order ∼1 fm due to the pres-
ence of a massive (1 GeV) scalar field. Clearly, the problem
of the existence of σ meson so heavy (strengthening the chi-
ral effect) is crucial to collect the necessary information on
the phase diagram of strongly interacting matter. Such solu-
tions develop a surface tension coefficient which is larger by
a factor 2 than the corresponding coefficient of a single kink
and, as we believe, signals some instability of the single kink
solution.

Figure 23 displays the specific binding energy of the
ensemble. It is defined by the expression similar to Eq. (39)
in that the integration over the quark droplet volume is per-

Fig. 23 The specific binding energy at Nf = 1 and Nf = 2 in MeV as
a function of quark number Nq

formed. The specific energy is normalized (compared) to the
ensemble energy at spatial infinity, i.e. in vacuum. Actually,
Fig. 23 shows several curves in the upper part of the plot
which corresponds to the calculations with Nf = 1. The
solid line is obtained by scanning over the parameter η and
corresponds to the data presented in Table 1. The dashed
curve is calculated at fixed η = 0.4 but by scanning over

the parameter
∗
M . It is clearly seen that if the specific energy

data are presented as a function of quark number Nq, then the
solutions, which we are interested in, rally in the local vicin-
ity of the curve where the maximal binding energy–|Eb| is
reached. A similar solution scanning can be performed over
the central density parameter ρ0 in origin. The corresponding

data are dotted for a certain fixed
∗
M and ρ0. It is interesting

to notice that on scanning over any variable discussed a sat-
uration property is observed and it looks like the minimum
in eb at Nq ∼ 200–250. The results for the specific bind-
ing energy as a function of particle number are in qualitative
agreement with the corresponding experimental data. One
may even observe quantitative agreement if the factor 3 (the
energy necessary to remove one baryon) is taken into account.
In fact, the equation system (34) represents an equation of
balance for the current quarks circulating between liquid and
gas phases.

Summarizing we would like to emphasize that in the
present paper we have demonstrated how a phase transition
of the liquid–gas kind (with reasonable values of parame-
ters) emerges in the NJL-type models. The constructed quark
ensemble displays some interesting features of the nuclear
ground state (for example, the existence of the state degener-
ate with the vacuum one), and the results of our study are sug-
gestive of speculating that the quark droplets could coexist
in equilibrium with the vacuum under the normal conditions.
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It seems that if the quark drops really exist, then their
features could be quite similar to the nuclear matter, and
the scenario of partial chiral symmetry restoration has been
realized as a chiral soliton. In the mean field (Ginsburg–
Landau) approximation we are able to show the strengthening
of chiral effects in the baryon that appears as the existence of
a massive 1 GeV scalar meson, and a realistic phase diagram
of strongly interacting matter may be obtained by studying
the mechanism of chiral effects strengthening.

6 Conclusion

In the present paper we described quantum liquids (Lan-
dau Fermi liquids) resulting from the quark models with a
four-fermion interaction. This consideration is based on the
identity of results obtained in [21–23] by using a dressing
Bogolyubov transformation and mean field approximation.
We demonstrated that the mean energy of the ensemble serves
as an energy functional of the Landau theory. It was shown
that in a wide range of potentials interesting for applications
one can expect the quantum liquids to behave in essentially
the same way. For some of their properties a band of estimates
was obtained. A comparison of NJL and KKB models, sub-
stantially different in many aspects, demonstrates that the
properties of quantum liquids do not actually depend on the
shape of the form factor (a natural interaction length); rather,
they are mainly determined by the coupling constant of the
interaction. It was shown that a common distinctive feature
of ensembles is the presence of occupied states degenerate
with respect to the vacuum in the chemical potential and pres-
sure. Based on this observation, the inhomogeneous states,
which allowed describing a transition layer, estimating the
surface tension, as well as studying some properties of quark
liquid droplets, were considered. It is noted that in the case of
a small number of quarks in a droplet instability associated
with lowering of the energy barrier, separating chiral phases,
apparently manifests itself. This instability is seen in two
kinks merging into one chiral soliton. The idea of a dynami-
cal equilibrium of a mixed phase consisting of baryon matter
and vacuum is discussed as a possible scenario for explaining
the stability of nuclear matter.
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