129 research outputs found

    Evaluation of Feasibility and Impact of Attacks against the 6top Protocol in 6TiSCH Networks

    Get PDF
    The 6TiSCH architecture has been gaining attraction as a promising solution to ensure reliability and security for communication in applications for the Industrial Internet of Things (IIoT). While many different aspects of the architecture have been investigated in literature, an in-depth analysis of the security features included in its design is still missing. In this paper, we assess the security vulnerabilities of the 6top protocol, a core component of the 6TiSCH architecture for enabling network nodes to negotiate communication resources. Our analysis highlights two possible attacks against the 6top protocol that can impair network performance and reliability in a significant manner. To prove the feasibility of the attacks in practice, we implemented both of them on the Contiki-NG Operating System and tested their effectiveness on a simple deployment with three Zolertia RE-Mote sensor nodes. Also, we carried out a set of simulations using Cooja in order to assess their impact on larger networks. Our results show that both attacks reduce reliability in the overall network and increase energy consumption of the network nodes

    Pharmacological Comparative Characterization of REL-1017 (Esmethadone-HCl) and Other NMDAR Channel Blockers in Human Heterodimeric N-Methyl-D-Aspartate Receptors

    Get PDF
    Excessive Ca2+ currents via N-methyl-D-aspartate receptors (NMDARs) have been implicated in many disorders. Uncompetitive NMDAR channel blockers are an emerging class of drugs in clinical use for major depressive disorder (MDD) and other neuropsychiatric diseases. The pharmacological characterization of uncompetitive NMDAR blockers in clinical use may improve our understanding of NMDAR function in physiology and pathology. REL-1017 (esmethadone-HCl), a novel uncompetitive NMDAR channel blocker in Phase 3 trials for the treatment of MDD, was characterized together with dextromethorphan, memantine, (±)-ketamine, and MK-801 in cell lines over-expressing NMDAR subtypes using fluorometric imaging plate reader (FLIPR), automated patch-clamp, and manual patch-clamp electrophysiology. In the absence of Mg2+, NMDAR subtypes NR1-2D were most sensitive to low, sub-ΌM glutamate concentrations in FLIPR experiments. FLIPR Ca2+ determination demonstrated low ΌM affinity of REL-1017 at NMDARs with minimal subtype preference. In automated and manual patch-clamp electrophysiological experiments, REL-1017 exhibited preference for the NR1-2D NMDAR subtype in the presence of 1 mM Mg2+ and 1 ΌM L-glutamate. Tau off and trapping characteristics were similar for (±)-ketamine and REL-1017. Results of radioligand binding assays in rat cortical neurons correlated with the estimated affinities obtained in FLIPR assays and in automated and manual patch-clamp assays. In silico studies of NMDARs in closed and open conformation indicate that REL-1017 has a higher preference for docking and undocking the open-channel conformation compared to ketamine. In conclusion, the pharmacological characteristics of REL-1017 at NMDARs, including relatively low affinity at the NMDAR, NR1-2D subtype preference in the presence of 1 mM Mg2+, tau off and degree of trapping similar to (±)-ketamine, and preferential docking and undocking of the open NMDAR, could all be important variables for understanding the rapid-onset antidepressant effects of REL-1017 without psychotomimetic side effects

    A cell surface arabinogalactan-peptide influences root hair cell fate

    Get PDF
    Indexación: Scopus.Root hairs (RHs) develop from specialized epidermal trichoblast cells, whereas epidermal cells that lack RHs are known as atrichoblasts. The mechanism controlling RH cell fate is only partially understood. RH cell fate is regulated by a transcription factor complex that promotes the expression of the homeodomain protein GLABRA 2 (GL2), which blocks RH development by inhibiting ROOT HAIR DEFECTIVE 6 (RHD6). Suppression of GL2 expression activates RHD6, a series of downstream TFs including ROOT HAIR DEFECTIVE 6 LIKE-4 (RSL4) and their target genes, and causes epidermal cells to develop into RHs. Brassinosteroids (BRs) influence RH cell fate. In the absence of BRs, phosphorylated BIN2 (a Type-II GSK3-like kinase) inhibits a protein complex that regulates GL2 expression. Perturbation of the arabinogalactan peptide (AGP21) in Arabidopsis thaliana triggers aberrant RH development, similar to that observed in plants with defective BR signaling. We reveal that an O-glycosylated AGP21 peptide, which is positively regulated by BZR1, a transcription factor activated by BR signaling, affects RH cell fate by altering GL2 expression in a BIN2-dependent manner. Changes in cell surface AGP disrupts BR responses and inhibits the downstream effect of BIN2 on the RH repressor GL2 in root epidermis. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trusthttps://nph-onlinelibrary-wiley-com.recursosbiblioteca.unab.cl/doi/10.1111/nph.1648

    The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms

    Get PDF
    Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3â€Č end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase Ξ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications

    Learning to live together: mutualism between self-splicing introns and their hosts

    Get PDF
    Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural RNA genes in all domains of life. They function as self-splicing ribozymes and thereby limit the phenotypic costs associated with disruption of a host gene while they act as mobile DNA elements to promote their spread within and between genomes. Once considered purely selfish DNA elements, they now seem, in the light of recent work on the molecular mechanisms regulating bacterial and phage group I and II intron dynamics, to show evidence of co-evolution with their hosts. These previously underappreciated relationships serve the co-evolving entities particularly well in times of environmental stress

    Central administration of cholecystokinin stimulates gastric pepsinogen secretion from anaesthetized rats.

    Get PDF
    Intracerebroventricular administration of CCK-8S was associated with a stimulation of gastric pepsinogen secretion from anaesthetized rats; similar effects were induced by CCK-8S given intravenously. The excitatory effect of intracerebroventricular CCK-8S was not modified by central injection of L-364,718 or L-365,260, whereas both these antagonists, given by intravenous route, prevented the pepsigogue action of parenteral CCK-8S. Intracerebroventricular or intravenous CCK-8S also increased basal acid secretion, this latter effect being prevented by parenteral L-365,260 but not L-364,718. It is suggested that centrally applied CCK-8S evokes pepsinogen secretion through the activation of peripheral CCK-A and CCK-B receptors
    • 

    corecore