
Evaluation of Feasibility and Impact of Attacks
Against the 6top Protocol in 6TiSCH Networks

Gioele Carignani∗, Francesca Righetti∗, Carlo Vallati∗, Marco Tiloca† and Giuseppe Anastasi ∗
∗Department of Information Engineering, University of Pisa, Pisa, Italy

Email: gioelecarignani@gmail.com, {francesca.righetti, carlo.vallati, giuseppe.anastasi}@ing.unipi.it
†RISE Cybersecurity, RISE Research Institutes of Sweden, Kista, Sweden

Email:marco.tiloca@ri.se

Abstract—The 6TiSCH architecture have been gaining attrac-
tion as a promising solution to ensure reliability and security
for communication in applications for the Industrial Internet of
Things (IIoT). While many different aspects of the architecture
have been investigated in literature, an in-depth analysis of
the security features included in its design is still missing. In
this paper, we assess the security vulnerabilities of the 6top
protocol, a core component of the 6TiSCH architecture for
enabling network nodes to negotiate communication resources.
Our analysis highlights two possible attacks against the 6top
protocol that can impair network performance and reliability
in a significant manner. To prove the feasibility of the attacks
in practice, we implemented both of them on the Contiki-NG
Operating System and tested their effectiveness on a simple
deployment with three Zolertia RE-Mote sensor nodes. Also, we
carried out a set of simulations using Cooja in order to assess
their impact on larger networks. Our results show that both
attacks reduce reliability in the overall network and increase
energy consumption of the network nodes.

Index Terms—Security, Industrial Internet of Things,
6TiSCH, 6top, IEEE 802.15.4.

I. INTRODUCTION

Recent advancements in communication technologies have
allowed the adoption of wireless solutions also in industrial
deployments. Such solutions, are expected to play a crucial
role as enabling technology to ensure rapid and flexible
deployment in the context of the Industrial Internet of Things
(IIoT). At the same time, industrial applications require
timely and reliable communication to safely implement crit-
ical functionalities such as industrial control and telemetry.

To this end, the “IPv6 over the TSCH mode of IEEE
802.15.4e” - 6TiSCH network architecture [1] has been gain-
ing attention as a solution that can fulfil such requirements
and ease the integration of existing IPv6 networks into sensor
and actuator networks in industrial systems. The architecture
is based on the Time Slotted Channel Hopping (TSCH)
mode for the Medium Access Control (MAC) protocol of
the standard IEEE 802.15.4 [2]. In particular, TSCH ensures
timely data transmission by framing time into deterministic
periodic slotframes composed of fixed timeslots, as well as
multi-channel communication and resiliency to interference
by leveraging multiple frequencies and channel hopping,
respectively.

Reliable and timely communication alone is not sufficient
to guarantee resiliency of industrial applications. That is,
communication security is also required, to ensure confi-
dentiality, integrity and freshness of messages exchanged

within the network. For this reason, the 6TiSCH architecture,
currently under standardisation within the 6TiSCH Working
Group (WG) at the IETF, includes by design a set of security
features. In particular, the architecture defines a minimal
security framework [3], which ensures secure network join-
ing, contextually with provisioning of key material. Also,
it relies on the link-layer security services of the IEEE
802.15.4 standard [4], which provides secure communication
through symmetric keys. In practical settings, all network
nodes typically use a same shared network key received upon
joining the network.

In this paper, we assess some security vulnerabilities of
the 6top protocol (6P), a core component of the 6TiSCH
architecture which enables network nodes to negotiate com-
munication resources and to agree on a common schedule.
Our analysis highlights two possible attacks against 6P,
namely the Traffic Dispersion attack and the Overloading
attack, which can significantly impair network performance
and reliability.

The rationale of both attacks is to alter the communication
schedule adopted by the victim node, through bogus 6P
transactions. In particular, both attacks result in a com-
munication schedule that differs between the victim node
and its neighbours. As ultimate goal, the Traffic Dispersion
attack aims at disrupting the message transmission of the
victim node, while the Overloading attack aims at allocating
unneeded communication resources and increasing the energy
consumption on the victim node.

Even with security at the link-layer, the attacks are possible
in practical settings due to the usage of a single network key,
shared among all the network nodes as pre-configured or
provided upon joining the network. It follows that any node
in the network is able to inject or alter a valid 6P message
as related to the 6P transaction of two other different nodes.
That is, while a 6P negotiation is intended to concern a pair of
nodes, it becomes practically exposed to passive monitoring
and active manipulation from any other network node.

To demonstrate the feasibility of the attacks in practice,
we implemented them on the popular Contiki-NG Operating
System (OS) for sensor nodes. We used our implementation
to carry out an experimental evaluation of the attacks impact,
where the attacks were mounted against real Zolertia RE-
Mote sensor nodes. In particular, we proved that both attacks
are feasible to perform and effective in achieving their goals.

Furthermore, to assess the attacks impact on larger networks,
we carried out a set of simulation experiments on multi-hop
topologies by using Cooja. Our results show that both attacks
reduce network reliability as a whole and increase energy
consumption of network nodes. To the best of our knowledge,
no previous work has analysed the security of 6P.

The rest of the paper is organised as follows. In Section III,
we introduce the technical background. In Section II we
present the related work. In Section IV, we introduce our
threat model. In Sections V and VI, we describe the general
attack scheme and the practical execution of two specific
attacks, respectively. In Section VII, we present our experi-
mental and simulation results, and discuss our results. Finally,
in Section VIII we draw our conclusions.

II. RELATED WORK

Although many works focus on different aspects of the
6TiSCH architecture, such as resource allocation [5] [6], only
a few have focused on the analysis of its security features
to highlight potential vulnerabilities. Specifically, they focus
on two main security aspects: (i) secure scheduling with
respect to selective jamming attacks and (ii) secure time
synchronisation.

For instance, in [7] the authors analyse how an external
jammer can efficiently and effectively jeopardise a node’s
communication pattern, by selectively jamming its trans-
missions and receptions. This is possible by exploiting the
periodicity of the channel hopping sequence, and thus getting
knowledge of the victim’s full schedule. In order to neutralise
the attack, the authors proposed DISH, a preventive coun-
termeasure that allows network nodes to pseudo-randomly
alter their communication pattern at every slotframe, in a way
which is unpredictable to the adversary, while still preserving
a consistent, collision-free schedule and without requiring
any additional communication.

Instead, [8] proposes two types of attacks against the time
synchronisation of TSCH. That is, the first one is based on
the tampering of control messages to induce victim nodes
to synchronise with a malicious node, and thus to adopt
a different, bogus channel hopping sequence. Instead, the
second one exploits the workflow of the routing protocol
RPL: by forging routing protocol control messages, the
adversary is able to manipulate the topology of the network.
The authors propose a set of countermeasures for both the
attacks.

III. TECHNICAL BACKGROUND

This section overviews the main technical concepts and
building blocks referred throughout the paper.

A. TSCH mode of IEEE 802.15.4

Time Slotted Channel Hopping (TSCH) is a mode for
the Medium Access Control (MAC) protocol of the standard
IEEE 802.15.4 [2]. The main goal of TSCH-based networks
is achieving high communication reliability with low power
consumption. To this end, TSCH adopts a time slotted access
mode. In particular, time is split into equally sized timeslots
of fixed length, grouped into periodic slotframes. In order to

IEEE 802.15.4 TSCH MAC

IEEE 802.15.4 PHY

6top

6LoWPAN

IPv6

UDP ICMP

CoAP RPL

Applis COJP

Fig. 1: 6TiSCH Stack.

increase the network capacity, TSCH allows different nodes
to concurrently transmit on the same timeslot using different
channel offsets (multi-channel communication). Moreover,
TSCH exploits the channel hopping technique to be resilient
to interference and multi-path fading, by changing the trans-
mission frequency every timeslot.

During a timeslot, a node possibly transmits/receives over
one of the available radio frequencies, computed as a function
of the Absolute Slotframe Number (ASN) and of a chan-
nelOffset value assigned to that node for that timeslot. A
schedule defines what pairs (timeslot, channel offset) have to
be used by a given network node. Such pairs are referred to
as cells, which are the practical communication resource in
the network. The specific building of such schedule is out of
the scope of TSCH.

B. 6TiSCH architecture

TSCH targets supervisory control and data acquisition
systems based on resource-constrained devices [4], which
rely more and more on cloud-based solutions and thus would
take great advantage of a standardised integration with the
Internet. To facilitate this integration, the IETF has worked
on “IPv6 over TSCH mode of IEEE 802.15.4”, namely the
6TiSCH architecture [1]. The goal of the 6TiSCH architecture
is to enable the Industrial Internet of Things paradigm, by
achieving wire-like reliability and low power consumption,
which are both already provided by the TSCH mode, together
with easy interoperability and integration with the Internet
offered by the IPv6 protocol [9].

The 6TiSCH protocol stack is shown in Fig. 1. The
Constrained Application Protocol (CoAP) [10] enables
lightweight RESTful interactions among network nodes.
Routing Protocol for Low-Power and Lossy Networks (RPL)
[11] is the routing protocol adopted to ensure multi-hop
data delivery. IPv6 over Low-Power Wireless Area Network
(6LoWPAN) provides integration and header compression of
IPv6 messages over IEEE 802.15.4. The 6TiSCH Operation
sublayer (6top) is a sublayer of Logical Link Control (LLC),
that provides an abstraction of an IP link over the TSCH-
based MAC layer, in order to allow the transmission of IPv6
packets.

In order to dynamically build a suitable schedule, 6TiSCH
nodes can run a dedicated Scheduling Function (SF), for
instance the 6TiSCH Minimal Scheduling Function (MSF)

[12]. The SF monitors the traffic and determines how many
and which cells are needed for the node to correctly operate.
Based on such indication from the SF, two nodes can
dynamically negotiate a pairwise schedule through the 6top
layer.

C. RPL protocol

RPL [11] was designed to implement routing functionali-
ties following the requirements introduced above, by building
a Destination Oriented Acyclic Graph (DODAG). It is based
on a distance vector that targets collection-based networks,
where data are periodically sent by nodes to a central entity
known as root node, i.e., the network node where the routing
topology described by the DODAG converges to. Each node
in the DODAG collects information about its neighbours and
select one as preferred parent, as the neighbour to exploit for
upward data forwarding.

In order to select the most convenient neighbour, each
node has a rank, i.e., a number that summarises possible
routing metrics associated to that node (e.g., battery level,
transmission latency, number of hops to the root node, link
quality, etc). An Objective Function (OF) defines the rules to
compute a rank value from these metrics and the policy for
the selection of the preferred parent.

D. 6top protocol

The 6top protocol (6P) [13] allows neighbours to agree
upon a certain schedule by negotiating (adding or deleting) or
relocating TSCH cells. The SF triggers 6P transactions with
other network nodes, in order to agree on updated pairwise
communication schedules.

There are seven types of 6P transactions, namely
ADD, DELETE, RELOCATE, COUNT, LIST, SIGNAL and
CLEAR. More specifically, a transaction is a complete ne-
gotiation between two neighbours that are running the same
SF. A transaction can be composed of 2 or 3 steps. In a
2-step transaction, composed by a request message and a
response message, the node that sends the request selects the
candidate cells to be added, deleted or relocated. Fig. 2 shows
an example of a 2-step ADD transaction. Instead, in a 3-step
transaction, there is an additional message that concludes the
negotiation, i.e., the confirmation message. In this case, the
node receiving the request proposes the candidate cells to the
transaction initiator, that terminates the negotiation with the
confirmation message.

It is important that any two nodes keep their schedule
updated and consistent, to avoid misalignment and incon-
sistencies that would also result in wasting energy and band-
width. To this end, each pair of neighbour nodes maintains
a sequence number (i.e., SeqNum), to ensure that request,
response and confirmation messages match with one another,
during and throughout 6P transactions. In particular, SeqNum
is used to (i) detect and handle duplicate messages, and (ii)
detect possible inconsistencies in the schedules.

6P embeds its messages in the Information Elements (IE)
[2] of data frames, for which it relies on the security services
provided by the link layer and described in Section III-E.

Node A Node B

Type: REQUEST
Code: ADD
SeqNum: 4

Type: RESPONSE
Code: RC_SUCCESS
SeqNum: 4

Fig. 2: Successful 6P transaction.

E. 6TiSCH minimal security

In order to securely join a 6TiSCH network, a node
performs the steps defined in the 6TiSCH Minimal Security
framework [3], as part of the Constrained Join Protocol
(CoJP). In particular, three entities are involved: (i) the Join
Registrar/Coordinator (JRC); (ii) the pledge, i.e. the new
node that wants to join the network; and (iii) the Join Proxy
(JP), acting as intermediary between the pledge and the
JRC. CoJP is based on the assumption that the JRC and the
Pledge pre-share a cryptographic key (PSK) used to mutually
authenticate.

Link-layer frames in the 6TiSCH network must be pro-
tected, by using the link-layer security services of IEEE
802.15.4. This always provides authentication and integrity
protection, optionally together with additional encryption. If
encryption is also provided, frames are protected by means
of the AES symmetric cipher in CCM* (Counter with CBC-
MAC) mode. The encryption key is provided by the JRC
upon joining, while the cipher nonce is formed by the ASN
and the node identifier.

During the joining process, all CoJP messages exchanged
between the pledge and the JRC, possibly through the JP,
are not protected at the link layer, since the pledge does not
have any knowledge of the key material used in the network
yet. Instead, the pledge and the JRC use their shared PSK as
Master Secret, in order to derive a security context and secure
their CoJP exchanges end-to-end at the application level.

With the except of specific control frames, the messages
exchanged in the network are typically encrypted and in-
tegrity protected. In either case, message protection at the
link-layer is performed by using the key material received
from the JRC upon joining, which is used for encrypting,
integrity-protecting and verifying the data and ACK frames
sent in the network.

Authentication of exchanged data frames is ensured only
at a broad network level. That is, a message recipient can
assert whether the message sender is any of the legitimate
network nodes. However, strict source authentication of data
messages is not ensured, i.e. a message recipient cannot assert
whether the message sender is in fact the exact network
node it claims to be. Of course, this enables attacks based
on passive listening, message forgery and injection, as well
as on identity impersonation through spoofing of addressing
information. Consequently, 6P transactions are vulnerable to
security attacks exploiting the commonly shared network key
for protecting data frames.

A

B

C
Fig. 3: Network reference topology.

IV. THREAT MODEL

Hereafter, we consider an adversary which is internal,
active and on-path, as well as in control of one network node.
As an actual member of the network, the compromised node
under the adversary’s control knows the key material used
in the network, especially the symmetric network key shared
by all network nodes (see Section III-E). Thus, the adversary
is able to read and alter the content of intercepted messages,
and to create new cryptographically valid messages. Note that
other relevant information, such as the current ASN used to
build the cipher nonce, is instead even publicly available.

Also, the adversary is in the transmission/reception range
of her intended victim nodes. Thus, she is able to intercept
messages they send, and to inject (newly) forged messages
for their reception. By possibly spoofing the source MAC
address of injected messages, the adversary can practically
induce a recipient node A to accept them as authentic and
generated from any other impersonated network node B.

In this work, the adversary especially focuses on messages
sent during 6P transactions, and is able to carry out a number
of attacks against two neighbour nodes and their schedule.
In particular, the adversary is able to intercept and forge
6P messages, and thus to carry out bogus 6P transactions
between two neighbour nodes. This eventually results in
the two nodes enforcing two different schedules with their
respective peer, while still believing to have a same common
schedule.

As an example, let us consider Fig. 3, where A and B are
two legitimate neighbour nodes that communicate according
to a consistent and shared schedule. For instance, in the
DODAG formed by RPL, B can be the preferred parent of
A. Instead, C is a compromised node under the control of the
adversary, and in the reception/transmission range of both A
and B. Of course, by exploiting the position of node C in the
DODAG and in the physical topology, the adversary may be
able to target multiple pairs of nodes as attack victims.

V. ATTACK GENERAL SCHEME

Consistently with the threat model discussed in Section
IV, the adversary builds on the following rationale to mount
the two specific security attacks described in Section VI.

That is, node C considers a pair of neighbour nodes A and
B, that share a consistent, previously established schedule S.
Then, the adversary produces an alternative schedule S ′ that
can maximise the impact of the intended specific attack. For
instance, the alternative schedule S ′ can be such that it does
not have any cell in common with the original schedule S.

After that, C impersonates A, and performs a bogus 6P
transaction with B, in order to induce B installing the new
schedule S ′. As a result, node A retains the original schedule
S, and continues assuming to share it with B. At the same

Node A Node C
(forged) LIST
SeqNum: 4

SeqNum++
SeqNum: 5

Node B

ACK x
RESPONSE SeqNum: 4 x

ACK

(forged) DELETE/
RELOCATE/ADD msg
SeqNum: 4

RESPONSE SeqNum: 4x
ACK

Legitimate transaction SeqNum: 5

ACKx

SeqNum++
SeqNum: 5

I Phase

II Phase

Fig. 4: General scheme for attacks.

time, B considers the new schedule S ′, and assumes it to be
a new valid schedule shared with A.

Additionally, the adversary has to ensure that A and B not
only erroneously believe to share a same schedule, but also
that they actually remain aligned with their 6P SeqNum. This
is required in order to prevent A and B from detecting that
the attack has occurred in the first place, when they engage
in a new 6P transaction. While it is easy for the adversary to
learn the current SeqNum for A and B before the attack starts
(i.e, by eavesdropping it), it is instead not trivial to have both
A and B aligned with their SeqNum at the end of the attack,
i.e. once the bogus 6P transaction with B is completed.

In order to successfully mount an attack, the adversary can
perform it in two phases, as shown in Fig. 4. We assume that,
before the attack starts, nodes A and B have SeqNum equal
to 4. Then, the two attack phases are as follows.

In the first phase, node C impersonates node B, and
performs a 6P transaction LIST by sending a request to node
A. Upon receiving the request from C (impersonating node
B), node A: i) sends a link-layer ACK to node B; ii) sends
a response addressed to node B, including its schedule S
shared with it; and iii) increments its SeqNum with B to
5, after the ACK sent by node B. Note that node B simply
ignores both the ACK and the response received from A, as
they do not match any ongoing 6P transaction from its own
perspective. Also, node B sends an ACK as a reply to the
ignored response from A, which does not impair the attack
execution and, most importantly, allows A to increment its
SeqNum. Instead, node C intercepts the response from A and
thus gets knowledge of the original schedule S.

In the second phase, node C generates an appropriate
schedule S ′, and performs a bogus 6P transaction with node
B. When doing so, C impersonates node A and uses as
SeqNum the value 4, i.e., the one eavesdropped by C before
the start of the attack. The particular 6P transaction, and
hence exchanged messages, depends on the specific attack to
mount. For instance, DELETE or RELOCATE can be used
to mount the Traffic Dispersion attack described in Section
VI-A, while ADD can be used to mount the Overloading
attack described in Section VI-B.

Upon receiving the request from C (impersonating node

A), node B: i) sends a link-layer ACK to node A; ii)
sends a response addressed to node A, including information
consistent with the specific 6P transaction and the received
request; and iii) increments its SeqNum with A to 5. Note that
B correctly processes the request, as including the SeqNum
4 that node B was expecting for a next 6P transaction with
node A. Also, node A simply ignores both the ACK and the
response received from node B, as they do not match any
ongoing 6P transaction from its own perspective. Besides,
node A sends an ACK as a reply to the ignored response
from B, which does not impair the attack execution.

Therefore, at the end of the second phase, nodes A and
B share the same SeqNum 5. As a consequence, they are
not going to experience inconsistencies during following
6P transactions (with other neighbours). At the same time,
hereafter node A (B) considers the schedule S (S ′) for
communicating with node B (A). As the two schedules do
not partially or entirely match by construction, this has a
disruptive impact on communications between nodes A and
B, and severely impact their performance as well as network
reliability as a whole.

A. Discussion on sequence number synchronisation

In the general attack scheme above, we assume that a
node A ignores an incoming 6P message from another node
B, if this includes a SeqNum that does not match with
any ongoing transaction with B. This is consistent with the
6top standard [13], that leaves the possible definition and
enforcement of different, more advanced policies to specific
implementations.

While our assumption is in fact aligned with current com-
mon practices, different 6P implementations might handle the
reception of 6P messages with unexpected SeqNum values
in a different way. For instance, a node may consider a 6P
response that does not match with any ongoing transaction
as an inconsistency and take actions to resolve it, e.g. by
performing a schedule rollback or a 6P CLEAR transaction.

In this case, the attack scheme requires to be extended, to
ensure that it remains undetected to the pair of nodes A and
B. Specifically, the adversary has to additionally suppress the
ACKs and the 6P responses sent during the attack execution,
e.g. by selectively jamming their transmission. This prevents
the intended recipient to receive those responses, and hence
to detect an inconsistency that can trigger reactions and thus
neutralise the attack. In addition, for each suppressed 6P
response, the adversary has also to inject a forged ACK mes-
sage addressed to the sender of that response. This prevents
the sender to possibly retransmit the response. With reference
to Fig. 4, this applies to: i) the ACK and the response from
node A to node B, during the 6P LIST transaction, in the
first attack phase; and ii) the ACK and the response from
node B to node A, in the second attack phase.

Since all the network nodes have a common synchro-
nised view of slotframes and timeslots, the suppression of
6P responses through jamming can be easily implemented
and efficiently carried out. In particular, the cells used for
transmitting 6P messages are known to all the network
nodes, hence the adversary can infer which frequency jam

and during which timeslot, while possibly remaining inactive
otherwise.

As a downside from suppressing 6P responses, the ad-
versary is not able anymore to retrieve their content. With
particular reference to the 6P LIST transaction in the first
attack phase, the adversary cannot gain knowledge of the
original schedule between nodes A and B from the response
sent by A. Thus, the adversary has to learn the S schedule
in advance and in a different way, e.g. by monitoring 6P
transactions or other communications between A and B.

VI. EXECUTION OF SPECIFIC ATTACKS

In this section, we present two particular instances of the
attack general scheme presented in Section V, namely the
Traffic Dispersion attack and the Overloading attack.

A. Traffic Dispersion attack

The main goal of the Traffic Dispersion attack is to disrupt
communications from a victim node A to its neighbour node
B, by dispersing messages that A sends to B according to
their (believed-to-be-)shared schedule. In particular, node B
is the preferred parent of node A, in the DODAG built by
RPL.

To achieve this goal, the adversary can actually perform
two different variants of the Traffic Dispersion attack, based
on the specific 6P transaction considered during the second
attack phase (see Fig. 4). The first variant relies on a 6P trans-
action DELETE, and is hereafter referred as DELETE attack.
The second variant relies on a 6P transaction RELOCATE,
and is hereafter referred as RELOCATE attack.

Consistently with the attack general scheme presented in
Section V, the Traffic Dispersion attack consists of two
phases. First, the adversary forges a 6P LIST transaction,
and retrieves the original schedule S between the nodes A
and B. Then, in the second phase, the adversary induces
B to install an alternative schedule S ′, by impersonating A
and performing with B a 6P transaction DELETE, in the
DELETE attack, or RELOCATE, in the RELOCATE attack.

Fig. 5 shows how the Traffic Dispersion attack is carried
out, for the DELETE attack (a) and the RELOCATE attack
(b), by a compromised node C under the adversary’s control.
In particular, the figure highlights how node B shifts from the
original schedule S to the alternative schedule S ′ installed
during the attack. After that, node B considers the schedule
S ′, and is thus not able to receive any transmission from A.

Specifically, Fig. 5(a) shows how, before the DELETE
attack starts, A and B share one common cell c1, on timeslot
18 and channel offset 3, in transmission and reception,
respectively. Due to the bogus 6P DELETE transaction, B is
induced to delete such only cell shared with A, and installs
an empty alternative schedule S ′. Practically, B does not
expect further communications from A. On the other hand, A
preserves the original schedule S. Finally, the adversary starts
being active in receiving (RX) mode, during cell c1. More
generally, C allocates in its own schedule the same cells that
have been removed from the schedule of B. From then on,
upon receiving messages from A and addressed to B during
those cells, C transmits an ACK to A. As a consequence,

22 (RX)

OverloadingTraffic dispersion

A

B

C
LIST

DEL cell (18,3,RX)

A

B

C

...

18 (RX)3 ...

... ...

RELOCATE cell

(18,3,RX) to (22,4,RX)

DELETE (a)

X

A

B

C

...

18 (RX)3 ...

... ...

A schedule:
A->B: (18,3,TX)...

...

3 ...

...18 (TX)

...

...

3 ...

...18 (TX)

...

18 (RX)3 ...

... ...

...

...

3 ...

...18 (TX)

...

18 (RX)3 ...

... ...X

A

B

C
LIST

A

B

C

...

18 (RX)3 ...

...

RELOCATE (b)

X

A

B

C

...

18 (RX)3 ...

... ...

A schedule:
A->B: (18,3,TX)...

...

3 ...

...18 (TX)

...

...

3 ...

...18 (TX)

...

18 (RX)3 ...

... ...

...

...

3 ...

...18 (TX)

...

18 (RX)3X...

A

B

C
LIST

...

18 (RX)3 ...

... ...

A schedule:
A->B: (18,3,TX)...

...

3

...

...18 (TX)

ADD cell (6,2,RX)

A

B

C

...

...
...

...18 (TX)
...

18 (RX)3 ...

... ...

3

3

A

B

C

...
...

...
...18 (TX)

18 (RX)3 ...

... ...

...

6 (RX)2 ...

(c)

4

Fig. 5: Schedule manipulation throughout the attack execution

A will erroneously believe communications with B to be
successful, and will not suspect of possible anomalies or
schedule de-synchronisation that might otherwise result in
a new negotiation. However, messages from A to B are not
going to be received by B.

Similarly, Fig. 5(b) shows how, before the RELOCATE
attack starts, A and B share the same common cell c1 as
defined above. Due to the bogus 6P RELOCATE transaction,
B is induced to replace the only cell shared with A, with
the different cell c2, on timeslot 22 and channel offset 4,
still in RX mode. Thus, B installs an alternative schedule
S ′ including only the cell c2, and practically expects further
communications from A on that cell from then on. On the
other hand, A preserves the original schedule S . After that,
C starts listening on cell c1, and performs as described above
for the DELETE attack. Also in this case, messages from A
to B are not going to be correctly received by B.

B. Overloading attack

The main goal of the Overloading attack is to make a
victim node B allocate unneeded cells to increase its energy
consumption. This can be done by adding more cells in
RX mode to its (believed-to-be-)shared schedule with its
neighbour node A. More generally, the adversary can induce
node B to add cells to its (believed-to-be-)shared schedule
with multiple neighbour nodes. To achieve this goal, the
adversary relies on a 6P ADD transaction during the second
attack phase (see Fig. 4). As in the Traffic Dispersion attack,
node B is the preferred parent of node A, in the DODAG
built by RPL.

Specifically, Fig. 5(c) shows how, before the Overloading
attack starts, A and B share one common cell c1, on timeslot
18 and channel offset 3, in transmission (TX) and RX mode,
respectively. Due to the bogus 6P ADD transaction, B is
induced to add one more cell c2, on timeslot 6 and channel
offset 2, shared with A and in RX mode. That is, B installs
an alternative schedule S ′, including both cell c1 and c2,
and practically expects further communications from A on
both cells from then on. On the other hand, A preserves
the original schedule S. Note that, unlike in the Traffic

Dispersion attack, C does not require to perform any further
actions such as the injection of ACK messages to A.

As a consequence, B will regularly be active during cell
c2 at each slotframe. This has two practical effects. First,
B is wasting a cell, that it could have rather considered for
negotiation with a different neighbour. Second, as regularly
listening for potential transmissions during cell c2 at each
slotframe, B will consume additional energy, while never
actually receiving any transmission from A.

VII. EVALUATION

In this section, we present the evaluation of the impact
on the network performance of the Traffic Dispersion and
Overloading attacks. Initially, we tested the feasibility of
the attacks by implementing them on real devices (see
Section VII-A). The goal of this proof-of-concept implemen-
tation composed of only three nodes is to demonstrate the
feasibility of implementing the operations required to mount
the attacks on real devices, characterised by limited capabili-
ties in terms of memory and computing. After demonstrating
that the attacks are feasible in practice, we assessed their
effects on a complete network through simulations (see
Section VII-B).

A. Proof of concept experiments

In order to demonstrate the feasibility of the attacks
and their impact on a simple scenario, we developed an
implementation of the attacks on the Contiki-NG OS 1. To
this aim, the 6P implementation available on Contiki-NG was
extended to support some missing 6P transactions, i.e., LIST,
RELOCATE and CLEAR. The implementation was tested
using the Zolertia RE-Mote [14] boards, a rapid prototyping
solution for many IoT applications. The boards are equipped
with an ARM Cortex-M3 microcontroller, with 512 KB of
ROM and 32 KB of RAM, as well as with a radio interface
implementing the IEEE 802.15.4 standard at 2.4 GHz and
sub 1 GHz.

1https://github.com/contiki-ng/contiki-ng

For the evaluation of the feasibility of the attacks, we
deployed the same topology with three nodes as the one
reported in Fig. 3. That is, node B is programmed to behave
as RPL root node, while node A and C are programmed
as regular nodes, which send one packet every 5 seconds,
whose payload is 5 bytes in size. The malicious node C, other
than carrying out the operations of a regular node, is also
programmed to mount the attacks. Each node is configured
to use MSF as Scheduling Function [12] for the distributed
allocation of cells.

Considering that the attacks are expected to impact the
reliability of the packet delivery and the energy consumption
of nodes, in all the experiments we measured the following
metrics, in order to quantify the effects of the attacks:
• Packet Delivery Ratio, defined as the ratio between the
total number of packets received at the RPL root node and
the total number of packets generated in the network;
• RX Energy consumption, defined as the total amount of
energy spent by a node when its radio is in RX mode;
• TX Energy consumption, defined as the total amount of
energy spent by a node when its radio is in TX mode.

All the metrics are evaluated over time with a 60 second
time-window granularity, to show the evolution of the net-
work before and after the attacks. We tested both the Traffic
Dispersion and the Overloading attacks. For each scenario, 5
different independent replicas of the experiments were run. In
order to obtain statistically sound results, the average value
over the samples collected from the different replicas are
reported with its 95% confidence interval.

To compute energy consumption values, we relied on
the Energest tool 2. Energest is a Contiki-NG module that
provides a lightweight, software-based energy estimation of
IoT devices running Contiki-NG. Energest makes it possible
to keep track of the time spent by the radio in RX and
TX mode, and to estimate the overall energy consumption.
To derive the energy consumption, we consider the power
consumption values reported in the hardware specifications
of the cc2538 radio chip3. While values extracted through
Energest are an estimate, they are proven to be reliable [15]
[16].

First, we tested the effectiveness of the Traffic Dispersion
attack. In this case, the malicious node C is programmed to
select node A as victim. Fig. 6 shows the Packet Delivery
Ratio as a function of time. We can see that, for the first 180
seconds of the experiment, the root node B receives almost
all the packets sent by the victim and the adversary, except
for some sporadic losses caused by channel fluctuations and
interference. At 180 seconds of the experiment, the adversary
triggers the attack and performs a 6P DELETE transaction,
impersonating node A, to delete the RX cells allocated by
node B. After the transaction is completed, node A still
transmits its packets on the TX cells allocated towards B.
However, the packets are not received by B, as the RX cells
were deleted from its schedule. As a consequence, after the
completion of the attack, the percentage of packets received

2https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-Energest
3http://www.ti.com/lit/ds/symlink/cc2538.pdf

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
ti
o
 [
%

]

Time [s]

Fig. 6: Packet delivery ratio at the root node. Delete attack

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 100 150 200 250 300 350 400 450 500

R
X

 E
n
e
rg

y
 [
m

J
]

Time [s]

attack
no attack

Fig. 7: RX Energy consumption of the root node with and
without attack. Overloading attack.

by node B starts to decrease and drops up to 50%, showing
that the only packets received by node B are those generated
by node C. These results demonstrate that the attack is
successful and it can be mounted on the devices considered
in our experiments.

Then, we tested the effectiveness of the Overloading
attack. In this case, the malicious node C is programmed
to select node B, the RPL root node, as victim, to make it
allocate unneeded cells towards A and increase its energy
consumption. Since the impact of this attack is proportional
to the number of the victim’s children, we expect to have
a small effect on the victim’s energy consumption. Never-
theless, we run this experiment to assess its feasibility in
practice, and to verify that it can have an impact on the
victim’s energy consumption, even on a small topology. In
Fig. 7, we compare the RX energy consumption of the victim,
with and without the attack. The TX energy consumption
measurements are not shown here since, as it was expected,
the attack did not influence them. At 180 seconds, the adver-
sary starts performing the attack, through which it installs two
additional RX cells with node A on the schedule of node B.
A, however, remains unaware of those additional scheduled
cells. As we can see in Fig. 7, the schedule manipulation
results in an increased energy consumption on the victim.
This is due to the fact that it turns on the radio during the two
additional RX cells to receive possible transmissions from A,
which, however, never occur. Thus, the impact of this attack

is proportional to the number of additional RX cells that the
attacker installs on B.

These results confirm that both the attacks can be mounted
on real devices. Regardless of their limited computing capa-
bilities, sensor nodes can timely execute all the functions
required to effectively perform the attacks. Also, the results
confirm that both the attacks can have an impact on the
performance of the victim, even in a small scale scenario.

B. Simulation results

In order to evaluate the effects of the attacks on a larger
network, we carried out a set of additional experiments aimed
at an extensive performance evaluation. To this end, we used
the Cooja network simulator [17], available as part of the
Contiki distribution. Cooja allows the execution of the same
code used for real devices, thus allowing the simulation of a
network in a rapid manner.

For our simulations, we considered a topology with 30
nodes randomly deployed in an area of 200m x 200m. For
each simulation the position of nodes is recomputed, except
for the RPL root node that is always placed in a fixed position
at the centre of the deployment area. The radio model used
is the Unit Disk Graph Medium (UDGM) and we used 4
frequency channels. We allocated 3 cells for 6P messages and
1 cell for TSCH/RPL control traffic. An example of topology
is shown in Fig. 8. The simulator has been configured to
model a network of Cooja motes, i.e., generic sensor nodes
equipped with an IEEE 802.15.4 radio. Each non-root node
is programmed to generate periodic traffic towards the root
node at a rate of one packet every 5 seconds, whose payload
is 5 bytes in size.

For each experiment, one malicious node C under the
adversary’s control is randomly placed in the network. That
node is programmed to perform the considered attack at
2200s from the beginning of the experiment. In particular,
node C first synchronises with the TSCH network, and waits
for the reception of a 6P message from one of its neighbours.
Then, as soon as a 6P message is eavesdropped, node C
selects the node which originated the 6P message as victim,
and carries out the considered attack against it.

Three different scenarios with three different positions for
node C are considered. Specifically, three different positions
with an increasing distance from the root node are consid-
ered: (i) root level area: node C is placed in a circular area
with radius 50m from the root node; (ii) middle level area:
node C is placed in a circular area with a distance between
50m and 100m from the root node, i.e. at a medium level
of the RPL topology; (iii) leaf level area: node C is placed
with a distance of at least 100m from the root node, i.e., the
victim is one of the leaves in the RPL topology.

For each scenario, we ran 20 independent replicas, in order
to obtain statistically sound results. Each simulation lasts
60 minutes. The same metrics collected in the experiments
reported in Section VII-A are considered also for the simu-
lations.

1) Traffic Dispersion Attack: First, we analyse the Traffic
Dispersion attack, which can be mounted in its two variants
by using a 6P DELETE or RELOCATE transaction (see

20

3

5

13

1

2

14
12

11

10

9

8

7

6

5
4

15

16

17
18

19

Leaf level area

Root level area

Middle level
area

Fig. 8: Example of topology used in simulations.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

ti
o

 [
%

]

Time [s]

no attack
leaf level area

middle level area
root child area

Fig. 9: Packet Delivery Ratio at the root node. DELETE
attack.

Section VI-A). In our experiments, we observed results
displaying the same trend for both the attack variants. Thus,
for the sake of brevity, here we report only the results for
the variant based on the 6P DELETE transaction, i.e., the
DELETE attack.

Fig. 9 shows the Packet Delivery Ratio when a DELETE
attack is performed. The solid line represents the Packet
Delivery Ratio over time in an attack-free case, while the
other lines report the results obtained when the attack is
performed, for different positions of the malicious node C.
We can see that, right after the execution of the attack, the
overall Packet Delivery Ratio reduces, due to the effect of the
dispersion of some packets caused by the attack. As expected,
the impact of the attack greatly depends on the position of
the victim, and consequently of node C, in the network. That
is, the closer to the root the victim is, the greater the effects.
Specifically, the maximum effect is obtained when node C
is placed in proximity of the root node, with a drop in the
delivery ratio of approximately 25%, while the lightest effect
is obtained when the victim node is a leaf, with a drop of
approximately 5%. This can be explained considering that
a node forwards all the traffic of the nodes in its sub-tree.
Thus, the larger its sub-tree, the higher the amount of traffic
that node has to forward. Due to the attack, all the traffic
supposed to be forwarded by the victim is dropped. Hence,
the larger the sub-tree the more significant the impact. On
the contrary, when the victim node is a leaf, the attack only
causes the drop of the packets originated by the victim itself.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1000 1500 2000 2500 3000 3500

R
X

 E
n
e
rg

y
 [
m

J
]

Time [s]

root level area
middle level area

leaf level area

Fig. 10: RX energy consumption. Adversary. DELETE at-
tack.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1000 1500 2000 2500 3000 3500

T
X

 E
n
e
rg

y
 [
m

J
]

Time [s]

attack
no attack

Fig. 11: TX energy consumption. Victim’s parent node (root
node). DELETE attack.

Hence, the impact on the Packet Delivery Ratio is limited.
In order to evaluate the cost of mounting the attack for

the adversary, in Fig. 10 we report the average RX energy
consumption of node C. The graph reports only the additional
energy cost due to the attack execution. That is, it shows only
the energy that node C additionally consumes to intercept
the packets sent by the victim on the deleted RX cells, in
order to reply back with ACK frames and ensure the attack
remains undetected (see Section VI-A). As expected, also in
this case, the closer to the root node, the higher the cost of the
attack. This can again be explained with the higher amount of
traffic received by node C, that hence spends more time with
its radio in RX mode. These results show that performing
the Traffic Dispersion attack has a minimal cost in terms of
additional energy, and is feasible to mount even when relying
on battery powered devices.

To conclude the analysis of the Traffic Dispersion attack,
in Fig. 11 we report the average TX energy consumption of
the parent of the victim node. For the sake of brevity, we
report the measurements obtained in the scenarios with node
C placed in the root area and in the attack-free scenario. As
expected, when the attack is performed, the parent node of
the victim displays a lower energy consumption for its radio
in TX mode. This is due to the fact that the victim’s parent
receives a smaller number of packets, and thus transmits less
ACK frames to acknowledge their reception.

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500

N
u
m

b
e
r

o
f
s
c
h
e
d
u
le

d
 c

e
lls

Time [s]

attack
no attack

Fig. 12: Cells scheduled on the victim. Overloading attack.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 500 1000 1500 2000 2500 3000 3500

R
X

 E
n
e
rg

y
 [
m

J
]

Time [s]

overloading attack
no attack

Fig. 13: RX Energy consumption. Victim with and without
overloading attack.

2) Overloading: In the following, we analyse the effects
of the Overloading attack (see Section VI-B). Unlike the
Dispersion attack, the impact of this attack is not affected
by the position of the victim node in the network topology.
For this reason, in each experiment, the malicious node C
is always positioned in proximity of a node which has three
neighbours and is selected as victim. We focus on analysing
the impact on energy consumption, as this attack is expected
to mainly affect the energy consumption of the victim.

To get an insight on the dynamics of the the attack, in
Fig. 12 we report the number of cells scheduled on the victim
node over time, throughout a single simulation run. In the
attack-free scenario, as well as before the attack is performed
at 2200s, in the attack scenario, the victim has only one cell
scheduled per child, i.e., a total of 3 cells. After the attack
is performed, the victim has a total of 9 RX cells allocated,
6 of which resulting from the attack execution.

In Fig. 13, we report the average RX energy consumption
of the victim node, in the attack-free and in the attack
scenario. The attack is performed at 2200s from the beginning
of the experiments, and results in the allocation of two
additional cells per child on the victim schedule. As expected,
after its completion, the attack results in a significant increase
in the RX energy consumption of the victim. To better
understand the practical implications, we derive the impact
on the battery lifetime of a sensor node. To this aim, we

consider a device powered by two AA 1.5V batteries, which
can provide a total capacity of 25920 J. The victim node
consumes 0,004 J per second, while a node under normal
operation consumes 0,003 J per seconds. This results in a
battery lifetime of 100 days that decreases to 75 days if the
attack is executed shortly after installation. This can result in
a battery drain that is 25% faster.

C. Attack mitigation and countermeasures

The presented attacks are possible since, in practical
settings, 6P transactions are a convenient target for com-
promised network nodes. In fact, practical settings rely on
a single symmetric key - network key - shared by all the
network nodes to secure data and acknowledgement frames.
Thus, if compromised and under control of an adversary, a
network node can perform any of the attacks discussed above.
Actually, any (compromised) node in the network, as owning
the network key, is able to inject or alter 6P messages. As a
consequence, 6P negotiations, as intended to concern a pair
of nodes, become practically exposed to passive monitoring
and active manipulation from any network node, as a way to
alter the schedules of selected victim nodes.

To detect and mitigate these types of attacks, monitoring
functionalities can be added to the used Scheduling Function.
Such extensions can regularly monitor different network
parameters, e.g. RX cell utilisation, and check the consistency
between enforced schedules and message exchanges. This
would provide relevant information to possibly run coun-
termeasures and mitigate the attack impact. For instance,
a Scheduling Function may monitor the actual message
reception on scheduled RX cells, and de-allocate them if no
(sufficient amount of) traffic is received during those cells.
However, even if effects would be mitigated and more limited
in time, attacks can still fundamentally impair the network
performance until they are actually detected, with consequent
eviction of the compromised nodes.

A more effective solution would be using symmetric
pairwise keys, each of which shared by a single pair of
neighbour nodes. By doing so, strict source authentication
of messages is achieved, including for those exchanged
during 6P transactions, thus preventing the considered attacks
altogether. On the other hand, the distribution, establishment
and revocation of of link-layer pairwise keys is a non-trivial,
often discouraging task, which practically paves the way
to using shared network keys. Approaches based on the
establishment and usage of symmetric pairwise keys are left
as future work.

VIII. CONCLUSION

In this paper, we have presented and assessed two at-
tacks against 6P on IIoT networks based on the 6TiSCH
architecture, namely the Traffic Dispersion and Overloading
attacks. We have proved the feasibility of their execution
and evaluated their impact on the network performance, both
experimentally on real devices and by means of simulations.
Our analysis confirms that both attacks are feasible, and can
have a significant impact in terms of reduced reliability and
increased energy consumption. To the best of our knowledge,

no previous work has analysed the security of 6top. Future
work will evaluate the cost and impact of these attacks on
large-scale testbeds, and will study the design of possible
6P extensions to mitigate the impact of the attacks. Finally,
we plan to analyse the feasibility and cost of approaches for
counteracting the presented attacks based on the establish-
ment of pairwise symmetric keys.

ACKNOWLEDGMENTS

This work was partially supported by the Italian Ministry
of Education and Research (MIUR) in the framework of the
CrossLab project (Departments of Excellence), as well as by
VINNOVA and the CelticNext project CRITISEC.

REFERENCES

[1] P. Thubert, “An Architecture for IPv6 over the TSCH mode of IEEE
802.15.4,” Internet Engineering Task Force, Tech. Rep. draft-ietf-
6tisch-architecture-28, October 2019, (W.I.P.).

[2] “Ieee standard for low-rate wireless networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), April 2016.

[3] M. Vučinić, J. Simon, K. Pister, and M. Richardson, “Constrained Join
Protocol (CoJP) for 6TiSCH,” Internet Engineering Task Force, Tech.
Rep. draft-ietf-6tisch-minimal-security-15, Dec. 2019, (W.I:P.).

[4] T. Watteyne, M. Palattella, and L. Grieco, “Using IEEE 802.15.4e
Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT):
Problem Statement,” RFC 7554 (Informational), RFC Editor, Fremont,
CA, USA, May 2015.

[5] S. Kim, H.-S. Kim, and C. Kim, “Alice: Autonomous link-based
cell scheduling for tsch,” in Proceedings of the 18th International
Conference on Information Processing in Sensor Networks. ACM,
2019.

[6] F. Righetti, C. Vallati, G. Anastasi, and S. K. Das, “Analysis and
improvement of the on-the-fly bandwidth reservation algorithm for
6tisch,” in 2018 IEEE 19th International Symposium on ”A World
of Wireless, Mobile and Multimedia Networks” (WoWMoM).

[7] M. Tiloca, D. D. Guglielmo, G. Dini, G. Anastasi, and S. K. Das,
“DISH: DIstributed SHuffling Against Selective Jamming Attack in
IEEE 802.15.4e TSCH Networks,” ACM Transactions on Senor Net-
works, Dec. 2018.

[8] W. Yang, Q. Wang, Y. Wan, and J. He, “Security vulnerabilities and
countermeasures for time synchronization in ieee802.15.4e networks,”
in 2016 IEEE 3rd International Conference on Cyber Security and
Cloud Computing (CSCloud).

[9] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the
TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration,” RFC 8180
(Best Current Practice), RFC Editor, Fremont, CA, USA, May 2017.

[10] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Applica-
tion Protocol (CoAP),” RFC 7252 (Proposed Standard), RFC Editor,
Fremont, CA, USA, Jun. 2014, updated by RFC 7959.

[11] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Mar. 2012.

[12] T. Chang, M. Vučinić, X. Vilajosana, S. Duquennoy, and D. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” Internet Engineering
Task Force, Tech. Rep. draft-ietf-6tisch-msf-10, Dec. 2019, (W.I.P.

[13] Q. Wang, X. Vilajosana, and T. Watteyne, “6TiSCH Operation Sublayer
(6top) Protocol (6P),” RFC 8480 (Proposed Standard), Fremont, CA,
USA, Nov. 2018.

[14] “Zolertia re-mote,” https://bit.ly/37rgqZT, accessed: 2020-01-25.
[15] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-

line energy estimation for sensor nodes,” in Proceedings of the 4th
Workshop on Embedded Networked Sensors. ACM, 2007.

[16] X. Fafoutis, A. Elsts, A. Vafeas, G. Oikonomou, and R. Piechocki,
“On predicting the battery lifetime of iot devices: Experiences from the
sphere deployments,” in Proceedings of the 7th International Workshop
on Real-World Embedded Wireless Systems and Networks. ACM,
2018.

[17] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with cooja,” in 31st IEEE Conference
on Local Computer Networks, 2006.

