449 research outputs found

    Dependences of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    Full text link
    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation.Comment: 5 pages, 1 figure, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    Dependences of the van der Waals atom-wall interaction on atomic and material properties

    Full text link
    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He∗{}^{\ast} and Na atoms near the metal, semiconductor or dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at shortest separations with an error less than 1% one should use the complete optical tabulated data for the complex refraction index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different nature.Comment: 14 pages, 5 figures, 3 tables, accepted for publication in Phys. Rev.

    A theory of Plasma Membrane Calcium Pump stimulation and activity

    Full text link
    The ATP-driven Plasma Membrane Calcium pump or Ca(2+)-ATPase (PMCA) is characterized by a high affinity to calcium and a low transport rate compared to other transmembrane calcium transport proteins. It plays a crucial role for calcium extrusion from cells. Calmodulin is an intracellular calcium buffering protein which is capable in its Ca(2+) liganded form of stimulating the PMCA by increasing both the affinity to calcium and the maximum calcium transport rate. We introduce a new model of this stimulation process and derive analytical expressions for experimental observables in order to determine the model parameters on the basis of specific experiments. We furthermore develop a model for the pumping activity. The pumping description resolves the seeming contradiction of the Ca(2+):ATP stoichiometry of 1:1 during a translocation step and the observation that the pump binds two calcium ions at the intracellular site. The combination of the calcium pumping and the stimulation model correctly describes PMCA function. We find that the processes of calmodulin-calcium complex attachment to the pump and of stimulation have to be separated. Other PMCA properties are discussed in the framework of the model. The presented model can serve as a tool for calcium dynamics simulations and provides the possibility to characterize different pump isoforms by different type-specific parameter sets.Comment: 24 pages, 6 figure

    Thermal quantum field theory and the Casimir interaction between dielectrics

    Full text link
    The Casimir and van der Waals interaction between two dissimilar thick dielectric plates is reconsidered on the basis of thermal quantum field theory in Matsubara formulation. We briefly review two main derivations of the Lifshitz formula in the framework of thermal quantum field theory without use of the fluctuation-dissipation theorem. A set of special conditions is formulated under which these derivations remain valid in the presence of dissipation. The low-temperature behavior of the Casimir and van der Waals interactions between dissimilar dielectrics is found analytically from the Lifshitz theory for both an idealized model of dilute dielectrics and for real dielectrics with finite static dielectric permittivities. The free energy, pressure and entropy of the Casimir and van der Waals interactions at low temperatures demonstrate the same universal dependence on the temperature as was previously discovered for ideal metals. The entropy vanishes when temperature goes to zero proving the validity of the Nernst heat theorem. This solves the long-standing problem on the consistency of the Lifshitz theory with thermodynamics in the case of dielectric plates. The obtained asymptotic expressions are compared with numerical computations for both dissimilar and similar real dielectrics and found to be in excellent agreement. The role of the zero-frequency term in Matsubara sum is investigated in the case of dielectric plates. It is shown that the inclusion of conductivity in the model of dielectric response leads to the violation of the Nernst heat theorem. The applications of this result to the topical problems of noncontact atomic friction and the Casimir interaction between real metals are discussed.Comment: 39 pages, 4 figures, to appear in Phys. Rev.

    Lateral projection as a possible explanation of the nontrivial boundary dependence of the Casimir force

    Get PDF
    We find the lateral projection of the Casimir force for a configuration of a sphere above a corrugated plate. This force tends to change the sphere position in the direction of a nearest corrugation maximum. The probability distribution describing different positions of a sphere above a corrugated plate is suggested which is fitted well with experimental data demonstrating the nontrivial boundary dependence of the Casimir force.Comment: 5 pages, 1 figur

    Exact Casimir-Polder potential between a particle and an ideal metal cylindrical shell and the proximity force approximation

    Full text link
    We derive the exact Casimir-Polder potential for a polarizable microparticle inside an ideal metal cylindrical shell using the Green function method. The exact Casimir-Polder potential for a particle outside a shell, obtained recently by using the Hamiltonian approach, is rederived and confirmed. The exact quantum field theoretical result is compared with that obtained using the proximity force approximation and a very good agreement is demonstrated at separations below 0.1RR, where RR is the radius of the cylinder. The developed methods are applicable in the theory of topological defects.Comment: 8 pages, 4 figures, Accepted for publication in Eur. Phys. J.

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    Implications For The Origin Of GRB 051103 From LIGO Observations

    Get PDF
    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication, go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-GRB051103/index.ph
    • …
    corecore