39 research outputs found

    Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers

    Get PDF
    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments. (Chemical Equation Presented)

    Influence of Particle Viscosity on Mass Transfer and Heterogeneous Ozonolysis Kinetics in Aqueous-Sucrose-Maleic Acid Aerosol

    Get PDF
    The ozonolysis kinetics of viscous aerosol particles containing maleic acid are studied. Kinetic fits are constrained by measured particle viscosities.</p

    Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions

    No full text
    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. <i>J. Phys. Chem. A/C</i> 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute–solvent energy interactions (Ohm et al. <i>J. Phys. Chem. A</i> 2015, Nandy et al. <i>J. Phys. Chem. A</i> 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1–2 and 1–3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute–solute and solute–solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions

    Phase Behavior of Ammonium Sulfate with Organic Acid Solutions in Aqueous Aerosol Mimics Using Microfluidic Traps

    No full text
    Water-soluble organic acids such as dicarboxylic acids are known to form a significant fraction of organic aerosol mass, yet the chemical composition and interactions between components in an organic acid–inorganic salt mixed particle remain unclear. In this study, phase behavior of different mixing ratios of the salt and organic acids, here 3-methyl glutaric acid and 3-methyl adipic acid, are investigated with respect to their water activity. A microfluidic pervaporation approach is used to study different phase transitions of internally mixed aqueous droplets. Single droplets of varied compositions are trapped and stored in microfluidic wells until dehydration, where both the water content and the solution volume of the droplet decrease slowly with time. The volume is calculated by imaging techniques and correlated with the initial known concentration of the solution to determine concentrations at each time interval. The phase transitions of the droplets with changing concentrations are also observed under an inverted microscope. This study will help determine the concentration at which a mixture droplet, mimicking organic and inorganic atmospheric aerosols, changes phase

    Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts

    No full text
    A semiempirical model is presented that predicts surface tensions (s) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation s = c1 + c2T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO3, H2SO4, NaCl, NaNO3, Na2SO 4, NaHSO4, Na2CO3, NaHCO 3, NaOH, NH4Cl, NH4NO3, (NH 4)2SO4, NH4HCO3, NH 4OH, KCl, KNO3, K2SO4, K 2CO3, KHCO3, KOH, CaCl2, Ca(NO 3)2, MgCl2, Mg(NO3)2, and MgSO4. The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored
    corecore