1,786 research outputs found
Modelling interplanetary CMEs using magnetohydrodynamic simulations
International audienceThe dynamics of Interplanetary Coronal Mass Ejections (ICMEs) are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength
Recommended from our members
Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors
Three existing models of Interplanetary Coronal
Mass Ejection (ICME) transit between the Sun and the Earth
are compared to coronagraph and in situ observations: all
three models are found to perform with a similar level of
accuracy (i.e. an average error between observed and predicted 1AU transit times of approximately 11 h). To improve long-term space weather prediction, factors influencing CME transit are investigated. Both the removal of the plane of sky projection (as suffered by coronagraph derived speeds of Earth directed CMEs) and the use of observed values of solar wind speed, fail to significantly improve transit time prediction. However, a correlation is found to exist between the late/early arrival of an ICME and the width of the preceding sheath region, suggesting that the error is a geometrical effect that can only be removed by a more accurate determination of a CME trajectory and expansion. The correlation between magnetic field intensity and speed of ejecta at 1AU is also investigated. It is found to be weak in the body of the
ICME, but strong in the sheath, if the upstream solar wind
conditions are taken into account
Health care resouce use and stroke outcome
Background and Purpose: Outcome in patients hospitalized for acute stroke varies considerably between populations. Within the framework of the GAIN International trial, a large multicenter trial of a neuroprotective agent (gavestinel, glycine antagonist), stroke outcome in relation to health care resource use has been compared in a large number of countries, allowing for differences in case mix. Methods: This substudy includes 1,422 patients in 19 countries grouped into 10 regions. Data on prognostic variables on admission to hospital, resource use, and outcome were analyzed by regression models. Results: All results were adjusted for differences in prognostic factors on admission (NIH Stroke Scale, age, comorbidity). There were threefold variations in the average number of days in hospital/institutional care (from 20 to 60 days). The proportion of patients who met with professional rehabilitation staff also varied greatly. Three-month case fatality ranged from 11% to 28%, and mean Barthel ADL score at three months varied between 64 and 73. There was no relationship between health care resource use and outcome in terms of survival and ADL function at three months. The proportion of patients living at home at three months did not show any relationship to ADL function across countries. Conclusions: There are wide variations in health care resource use between countries, unexplained by differences in case mix. Across countries, there is no obvious relationship between resource use and clinical outcome after stroke. Differences in health care traditions (treatment pathways) and social We thank the coinvestigators and research staff at the participating centers for their support. Glaxo Wellcome sponsored the GAIN International trial, supported the present analyses and reviewed the final draft of the article
First Cluster results of the magnetic field structure of the mid- and high-altitude cusps
International audienceMagnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000). Evidence for field-aligned currents (FACs) was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km) were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence
Development and calibration of a sand pluviation device for preparation of model sand bed for centrifuge tests
A bespoke 0.068m3 (18.5 gallon) sand hopper is employed at the newly established 50gTon centrifuge facility at the University of Sheffield. The sand hopper employs a series of mesh inserts of different diameters which control the flow rate and thus the relative density of the model. A series of calibration tests on equivalent Fraction E and Fraction C sands were performed to calibrate the mesh diameter and drop height for a desired relative density. Result showed that the sand hopper is capable of delivering repeatable relative densities in the range of 30% to above 90%, for both kinds of sand grades. This wide range relative density is considered sufficient to satisfy the needs of researchers preparing dry sand models for testing in the center
Recommended from our members
Non-radial solar wind flows induced by the motion of interplanetary coronal mass ejections
A survey of the non-radial flows (NRFs) during
nearly five years of interplanetary observations revealed
the average non-radial speed of the solar wind flows to
be �30 km/s, with approximately one-half of the large
(>100 km/s) NRFs associated with ICMEs. Conversely, the
average non-radial flow speed upstream of all ICMEs is
�100 km/s, with just over one-third preceded by large NRFs.
These upstream flow deflections are analysed in the context
of the large-scale structure of the driving ICME. We chose
5 magnetic clouds with relatively uncomplicated upstream
flow deflections. Using variance analysis it was possible to
infer the local axis orientation, and to qualitatively estimate the point of interception of the spacecraft with the ICME. For all 5 events the observed upstream flows were in agreement with the point of interception predicted by variance analysis. Thus we conclude that the upstream flow deflections in these events are in accord with the current concept of the large scale structure of an ICME: a curved axial loop connected to the Sun, bounded by a curved (though not necessarily circular)cross section
Recommended from our members
A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere
We study here the injection and transport of ions in the convection-dominated region of the Earth’s magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001) survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992). The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of _1 keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convectionrelated time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by nonreconnection coupling. At higher energies (_2–20 keV), we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence the location and behaviour of the plasma populations in the magnetosphere
Flare energetics
In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested
The energetics of the gradual phase
Reseachers compare results with those in the chapter by Moore et al. (1980), who reached five main conclusions about the gradual phase: (1) the typical density of the soft X-ray emitting plasma is between 10 to the 11th power and 10 to the 12th power cm-3 for compact flares and between 10 to the 10th power and 10 to the 11th power cm-3 for a large-area flare; (2) cooling is by conduction and radiation in roughly equal proportions; (3) continual heating is needed in the decay phase of two-ribbon flares; (4) continual heating is probably not needed in compact events; (5) most of the soft-X-ray-emitting plasma results from chromospheric evaporation. The goal was to reexamine these problems with the data from the Solar Maximum Mission (SMM) and other supporting instruments as well as to take advantage of recent theoretical advances. SMM is capable of measuring coronal temperatures more accurately and with a better cadence than has been possible before. The SMM data set is also unique in that the complete transit of an active region was observed, with soft X-ray and UV images being taken every few minutes. Researcher's were therefore able to establish the pre-flare conditions of the region and see whether anything has changed as a result of the flare. The assumptions made in attempting to determine the required plasma parameters are described. The derived parameters for the five prime flares are presented, and the role of numerical simulations is discussed
- …
