14,423 research outputs found
A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center
Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a ~3 × 10^7 M_☉ ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40° with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x_2 orbits predicted for the barred Galactic potential. Sgr A⋆ is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data
Measuring the muon's anomalous magnetic moment to 0.14 ppm
The anomalous magnetic moment (g-2) of the muon was measured with a precision
of 0.54 ppm in Experiment 821 at Brookhaven National Laboratory. A difference
of 3.2 standard deviations between this experimental value and the prediction
of the Standard Model has persisted since 2004; in spite of considerable
experimental and theoretical effort, there is no consistent explanation for
this difference. This comparison hints at physics beyond the Standard Model,
but it also imposes strong constraints on those possibilities, which include
supersymmetry and extra dimensions. The collaboration is preparing to relocate
the experiment to Fermilab to continue towards a proposed precision of 0.14
ppm. This will require 20 times more recorded decays than in the previous
measurement, with corresponding improvements in the systematic uncertainties.
We describe the theoretical developments and the experimental upgrades that
provide a compelling motivation for the new measurement.Comment: 5 pages, 1 figure, presented at International Nuclear Physics
Conference 2010 (INPC 2010
Spatial Models to Account for Variation in Observer Effort in Bird Atlases
To assess the importance of variation in observer effort between and within bird atlas projects and demonstrate the use of relatively simple conditional autoregressive (CAR) models for analyzing grid-based atlas data with varying effort. Pennsylvania and West Virginia, United States of America. We used varying proportions of randomly selected training data to assess whether variations in observer effort can be accounted for using CAR models and whether such models would still be useful for atlases with incomplete data. We then evaluated whether the application of these models influenced our assessment of distribution change between two atlas projects separated by twenty years (Pennsylvania), and tested our modeling methodology on a state bird atlas with incomplete coverage (West Virginia). Conditional Autoregressive models which included observer effort and landscape covariates were able to make robust predictions of species distributions in cases of sparse data coverage. Further, we found that CAR models without landscape covariates performed favorably. These models also account for variation in observer effort between atlas projects and can have a profound effect on the overall assessment of distribution change. Accounting for variation in observer effort in atlas projects is critically important. CAR models provide a useful modeling framework for accounting for variation in observer effort in bird atlas data because they are relatively simple to apply, and quick to run
L^2 torsion without the determinant class condition and extended L^2 cohomology
We associate determinant lines to objects of the extended abelian category
built out of a von Neumann category with a trace. Using this we suggest
constructions of the combinatorial and the analytic L^2 torsions which, unlike
the work of the previous authors, requires no additional assumptions; in
particular we do not impose the determinant class condition. The resulting
torsions are elements of the determinant line of the extended L^2 cohomology.
Under the determinant class assumption the L^2 torsions of this paper
specialize to the invariants studied in our previous work. Applying a recent
theorem of D. Burghelea, L. Friedlander and T. Kappeler we obtain a Cheeger -
Muller type theorem stating the equality between the combinatorial and the
analytic L^2 torsions.Comment: 39 page
Suppression of spin-torque in current perpendicular to the plane spin-valves by addition of Dy cap layers
We demonstrate that the addition of Dy capping layers in current
perpendicular to the plane giant magneto-resistive spin-valves can increase the
critical current density beyond which spin-torque induced instabilities are
observed by about a factor of three. Current densities as high as 5e7 A/cm2 are
measured provided that the electron current flows from the free to the
reference layer. While Dy capped samples exhibit nonmagnetic 1/f noise, it is
sufficiently small to be unimportant for read head operation at practical data
rates.Comment: 13 pages (manuscript form), with 5 figures. Submitted for publicatio
Tracing the energetics and evolution of dust with Spitzer : a chapter in the history of the Eagle Nebula
Context. The Spitzer GLIMPSE and MIPSGAL surveys have revealed a wealth of details about the Galactic plane in the infrared (IR)with orders of magnitude higher sensitivity, higher resolution, and wider coverage than previous IR observations. The structure of the interstellar medium (ISM) is tightly connected to the countless star-forming regions. We use these surveys to study the energetics and dust properties of the Eagle Nebula (M16), one of the best known star-forming regions.
Aims. We present MIPSGAL observations of M16 at 24 and 70 μm and combine them with previous IR data. The mid-IR image
shows a shell inside the well-known molecular borders of the nebula, as in the ISO and MSX observations from 15 to 21 μm. The morphologies at 24 and 70 μm are quite different, and its color ratio is unusually warm. The far-IR image resembles the one at 8 μm that enhances the structure of the molecular cloud and the "pillars of creation". We use this set of IR data to analyze the dust energetics and properties within this template for Galactic star-forming regions.
Methods. We measure IR spectral energy distributions (SEDs) across the entire nebula, both within the inner shell and the photodissociation regions (PDRs).We use the DUSTEM model to fit these SEDs and constrain the dust temperature, the dust-size distribution, and the radiation field intensity relative to that provided by the star cluster NGC 6611 (χ/χ0). Results. Within the PDRs, the inferred dust temperature (~35 K), the dust-size distribution, and the radiation field intensity (χ/χ0 < 1) are consistent with expectations. Within the inner shell, the dust is hotter (~70 K). Moreover, the radiation field required to fit the
SED is larger than that provided by NGC 6611 (χ/χ0 > 1). We quantify two solutions to this problem: (1) The size distribution of the dust in the shell is not that of interstellar dust. There is a significant enhancement of the carbon dust-mass in stochastically heated
very small grains. (2) The dust emission arises from a hot (~10^6 K) plasma where both UV and collisions with electrons contribute to the heating. Within this hypothesis, the shell SED may be fit for a plasma pressure p/k ~ 5 × 10^7 K cm^(−3).
Conclusions. We suggest two interpretations for the M16 inner shell: (1) The shell matter is supplied by photo-evaporative flows arising from dense gas exposed to ionized radiation. The flows renew the shell matter as it is pushed out by the pressure from stellar winds. Within this scenario, we conclude that massive-star forming regions such as M16 have a major impact on the carbon dustsize
distribution. The grinding of the carbon dust could result from shattering in grain-grain collisions within shocks driven by the dynamical interaction between the stellar winds and the shell. (2) We also consider a more speculative scenario where the shell is a supernova remnant. In this case, we would be witnessing a specific time in the evolution of the remnant where the plasma pressure and temperature would enable the remnant to cool through dust emission
Spitzer's mid-infrared view on an outer Galaxy Infrared Dark Cloud candidate toward NGC 7538
Infrared Dark Clouds (IRDCs) represent the earliest observed stages of
clustered star formation, characterized by large column densities of cold and
dense molecular material observed in silhouette against a bright background of
mid-IR emission. Up to now, IRDCs were predominantly known toward the inner
Galaxy where background infrared emission levels are high. We present Spitzer
observations with the Infrared Camera Array toward object G111.80+0.58 (G111)
in the outer Galactic Plane, located at a distance of ~3 kpc from us and ~10
kpc from the Galactic center. Earlier results show that G111 is a massive, cold
molecular clump very similar to IRDCs. The mid-IR Spitzer observations
unambiguously detect object G111 in absorption. We have identified for the
first time an IRDC in the outer Galaxy, which confirms the suggestion that
cluster-forming clumps are present throughout the Galactic Plane. However,
against a low mid-IR back ground such as the outer Galaxy it takes some effort
to find them.Comment: Accepted for publication in ApJL -- 11 pages, 2 figures (1 colour
Development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression
Flutter suppression (FS) is one of the active control concepts being investigated by the AFW program. The design goal for FS control laws was to increase the passive flutter dynamic pressure by 30 percent. In order to meet this goal, the FS control laws had to be capable of suppressing both symmetric and antisymmetric flutter instabilities simultaneously. In addition, the FS control laws had to be practical and low-order, robust and capable of real time execution within the 200 hz. sampling time. The purpose here is to present an overview of the development, simulation validation, and wind tunnel testing of a digital controller system for flutter suppression
Generalized Particle Statistics in Two-Dimensions: Examples from the Theory of Free Massive Dirac Field
In the framework of algebraic quantum field theory we analyze the anomalous
statistics exhibited by a class of automorphisms of the observable algebra of
the two-dimensional free massive Dirac field, constructed by fermionic gauge
group methods. The violation of Haag duality, the topological peculiarity of a
two-dimensional space-time and the fact that unitary implementers do not lie in
the global field algebra account for strange behaviour of statistics, which is
no longer an intrinsic property of sectors. Since automorphisms are not inner,
we exploit asymptotic abelianness of intertwiners in order to construct a
braiding for a suitable -tensor subcategory of End(). We
define two inequivalent classes of path connected bi-asymptopias, selecting
only those sets of nets which yield a true generalized statistics operator.Comment: 24 page
- …