49 research outputs found

    RaDoM2: an improved radon dosimeter

    Get PDF
    A new dosimeter for radon progeny called RaDoM (Radon Dose Monitor) was recently developed at CERN . RaDoM is an active detector able to directly estimate the effective dose due to the radon progeny. The first version, which used the Timepix hybrid pixel detector, a system of filters and a pump, correctly assessed the effective dose in situations where the environmental conditions are characterized by a standard equilibrium factor, but showed low efficiency for low radon concentrations and in clean air environments. In this improved version, RaDoM2, the Timepix has been replaced by a silicon pin diode. This solution has allowed the optimization of the geometry, the pump flow rate and the associated electronics, improving the performance of RaDoM and substantially reducing its manufacturing costs. This paper describes the RaDoM2, its improved performance compared to RaDoM, the cloud and user interface, tests in a radon chamber and on-the-field measurementsPeer ReviewedPostprint (published version

    Instrument intercomparison in the high-energy mixed field at the CERN-EU reference field (CERF) facility

    Get PDF
    This paper discusses an intercomparison campaign performed in the mixed radiation field at the CERN-EU (CERF) reference field facility. Various instruments were employed: conventional and extended-range rem counters including a novel instrument called LUPIN, a bubble detector using an active counting system (ABC 1260) and two tissue-equivalent proportional counters (TEPCs). The results show that the extended range instruments agree well within their uncertainties and within 1σ with the H*(10) FLUKA value. The conventional rem counters are in good agreement within their uncertainties and underestimate H*(10) as measured by the extended range instruments and as predicted by FLUKA. The TEPCs slightly overestimate the FLUKA value but they are anyhow consistent with it when taking the comparatively large total uncertainties into account, and indicate that the non-neutron part of the stray field accounts for ∼30 % of the total H*(10

    Pulsed neutron fields measurements around a synchrotron storage ring

    Get PDF
    A measurement campaign was performed for characterizing the neutron ambient dose equivalent, H*(10), in selected positions at ISA, Aarhus, Denmark, around the ASTRID and ASTRID2 storage rings. The neutron stray radiation field is characterized here by very intense radiation bursts with a low repetition rate, which result in a comparatively low average H*(10) rate. As a consequence, devices specifically conceived for operating in pulsed neutron fields must be employed for efficiently measuring in this radiation environment, in order to avoid severe underestimations of the H*(10) rate. The measurements were performed with the ELSE NUCLEAR LUPIN 5401 BF3-NP rem counter, a detector characterized by an innovative working principle that is not affected by dead time losses. This allowed characterizing both the H*(10) and the time structure of the radiation field in the pre-selected positions

    Comparison of the performance of different instruments in the stray neutron field around the CERN Proton Synchrotron

    Get PDF
    This paper discusses an intercomparison campaign carried out in several locations around the CERN Proton Synchrotron. The locations were selected in order to perform the measurements in different stray field conditions. Various neutron detectors were employed: ionisation chambers, conventional and extended range rem counters, both commercial and prototype ones, including a novel instrument called LUPIN, specifically conceived to work in pulsed fields. The attention was focused on the potential differences in the instrument readings due to dead-time losses that are expected to affect most commercial units. The results show that the ionisation chambers and LUPIN agree well with the expected H*(10) values, as derived from FLUKA simulations, showing no relevant underestimations even in strongly pulsed fields. On the contrary, the dead-time losses of the other rem counters induced an underestimation in pulsed fields that was more important for instruments characterised by a higher dead tim

    REFLECT – Research flight of EURADOS and CRREAT: Intercomparison of various radiation dosimeters onboard aircraft

    Get PDF
    Aircraft crew are one of the groups of radiation workers which receive the highest annual exposure to ionizing radiation. Validation of computer codes used routinely for calculation of the exposure due to cosmic radiation and the observation of nonpredictable changes in the level of the exposure due to solar energetic particles, requires continuous measurements onboard aircraft. Appropriate calibration of suitable instruments is crucial, however, for the very complex atmospheric radiation field there is no single reference field covering all particles and energies involved. Further intercomparisons of measurements of different instruments under real flight conditions are therefore indispensable. In November 2017, the REFLECT (REsearch FLight of EURADOS and CRREAT) was carried out. With a payload comprising more than 20 different instruments, REFLECT represents the largest campaign of this type ever performed. The instruments flown included those already proven for routine dosimetry onboard aircraft such as the Liulin Si-diode spectrometer and tissue equivalent proportional counters, as well as newly developed detectors and instruments with the potential to be used for onboard aircraft measurements in the future. This flight enabled acquisition of dosimetric data under well-defined conditions onboard aircraft and comparison of new instruments with those routinely used. As expected, dosimeters routinely used for onboard aircraft dosimetry and for verification of calculated doses such as a tissue equivalent proportional counter or a silicon detector device like Liulin agreed reasonable with each other as well as with model calculations. Conventional neutron rem counters underestimated neutron ambient dose equivalent, while extended-range neutron rem counters provided results comparable to routinely used instruments. Although the responses of some instruments, not primarily intended for the use in a very complex mixed radiation field such as onboard aircraft, were as somehow expected to be different, the verification of their suitability was one of the objectives of the REFLECT. This campaign comprised a single short flight. For further testing of instruments, additional flights as well as comparison at appropriate reference fields are envisaged. The REFLECT provided valuable experience and feedback for validation of calculated aviation doses.Postprint (published version

    Instrument intercomparison in the pulsed neutron fields at the CERN HiRadMat facility

    Get PDF
    An intercomparison of the performances of active neutron detectors was carried out in pulsed neutron fields in the new HiRadMat facility at CERN. Five detectors were employed: four of them (two ionization chambers and two rem counters) are routinely employed in the CERN radiation monitoring system, while the fifth is a novel instrument, called LUPIN, specifically conceived for applications in pulsed neutron fields. The measurements were performed in the stray field generated by a proton beam of very short duration with momentum of 440 GeV/c impinging on a dump. The beam intensity was steadily increased during the experiment by more than three orders of magnitude, with an H*(10) due to neutrons at the detector reference positions varying between a few nSv per burst and a few µSv per burst. The aim of the experiment was to evaluate the linearity of the detector response in extreme pulsed conditions as a function of the neutron burst intensity. The results show that the ionization chambers have a quasi-linear response, very close to the ideal behaviour also for values of H*(10) of a few µSv/burst; the LUPIN response shows a slight deviation from the ideal curve when the H*(10) per burst is higher than 100 nSv; the rem counters response are characterized by a strong deviation from the linearity for H*(10) values higher than a few ten of nSv

    REFLECT – Research flight of EURADOS and CRREAT: Intercomparison of various radiation dosimeters onboard aircraft

    Get PDF
    Aircraft crew are one of the groups of radiation workers which receive the highest annual exposure to ionizing radiation. Validation of computer codes used routinely for calculation of the exposure due to cosmic radiation and the observation of nonpredictable changes in the level of the exposure due to solar energetic particles, requires continuous measurements onboard aircraft. Appropriate calibration of suitable instruments is crucial, however, for the very complex atmospheric radiation field there is no single reference field covering all particles and energies involved. Further intercomparisons of measurements of different instruments under real flight conditions are therefore indispensable. In November 2017, the REFLECT (REsearch FLight of EURADOS and CRREAT) was carried out. With a payload comprising more than 20 different instruments, REFLECT represents the largest campaign of this type ever performed. The instruments flown included those already proven for routine dosimetry onboard aircraft such as the Liulin Si-diode spectrometer and tissue equivalent proportional counters, as well as newly developed detectors and instruments with the potential to be used for onboard aircraft measurements in the future. This flight enabled acquisition of dosimetric data under well-defined conditions onboard aircraft and comparison of new instruments with those routinely used. As expected, dosimeters routinely used for onboard aircraft dosimetry and for verification of calculated doses such as a tissue equivalent proportional counter or a silicon detector device like Liulin agreed reasonable with each other as well as with model calculations. Conventional neutron rem counters underestimated neutron ambient dose equivalent, while extended-range neutron rem counters provided results comparable to routinely used instruments. Although the responses of some instruments, not primarily intended for the use in a very complex mixed radiation field such as onboard aircraft, were as somehow expected to be different, the verification of their suitability was one of the objectives of the REFLECT. This campaign comprised a single short flight. For further testing of instruments, additional flights as well as comparison at appropriate reference fields are envisaged. The REFLECT provided valuable experience and feedback for validation of calculated aviation doses

    Preliminary study of silica aerogel as a gas-equivalent material in ionization chambers

    No full text
    Since about two decades, a renewed interest on aerogels has risen. These peculiar materials show fairly unique properties. Thus, they are under investigation for both scientific and commercial purposes and new optimized production processes are studied. In this work, the possibility of using aerogel in the field of radiation detection is explored. The idea is to substitute the gas filling in a ionization chamber with the aerogel. The material possesses a density about 100 times greater than ambient pressure air. Where as the open-pore structure should allow the charge carriers to move freely. Small hydrophobic silica aerogel samples were studied. A custom ionization chamber, capable of working both with aerogel or in the classic gas set up, was built. The response of the chamber in current mode was investigated using an X-ray tube. The results obtained showed, under proper conditions, an enhancement of about 60 times of the current signal in the aerogel configuration with respect to the classic gas one. Moreover, some unusual behaviours were observed, i.e. time inertia of the signal and super-/sub-linear current response with respect to the dose rate. While testing high electric fields, aerogel configuration seemed to enhance the Townsend's effects. In order to represent the observed trends, a trappingâ\u80\u93detrapping model is proposed, which is capable to predict semi-empirically the steady state currents measured. The time evolution of the signal is semi-quantitatively represented by the same model. The coefficients estimated by the fits are in agreement with similar trapping problems in the literature. In particular, a direct comparison between the benchmark of the FET silica gates and aerogel case endorses the idea that the same type of phenomenon occurs in the studied case

    Calibration of the W-PIE neutron spectrometer at CERF reference facility

    No full text
    The W-PIE is a cosmic neutron spectrometer used for environmental measurements, developed by Politecnico di Milano. The instrument is based on the Artkis M800 thermal neutron detector and works as a 4-channel spectrometer for detecting neutrons in the energy range of 0.01 eV-1 GeV. After the spectrometer had been calibrated in some monoenergetic neutron fields at the PIAF facility of PTB, the instrument was tested in the neutron field generated at the CERF facility, whose spectrum fairly resembles the cosmic one. This measurement is a precious tool for predicting the performance of the instrument in a realistic situation
    corecore