3,683 research outputs found

    Missing heavy flavor backgrounds to Higgs boson production

    Full text link
    We investigate characteristics of the signal and backgrounds for Higgs boson decay into WW at the Fermilab Tevatron and CERN Large Hadron Collider. In the the lepton-pair-plus-missing-energy final state, we show that the background receives an important contribution from semileptonic decays of heavy flavors. Lepton isolation cuts provide too little suppression of these heavy flavor contributions, and an additional 4 to 8 orders-of-magnitude suppression must come from physics cuts. We demonstrate that an increase of the minimum transverse momentum of nonleading leptons in multilepton events is one effective way to achieve the needed suppression, without appreciable loss of the Higgs boson signal. Such a cut would impact the efficiency of searches for supersymmetry as well. We emphasize the importance of direct measurement of the lepton background from heavy flavor production.Comment: 23 pgs., 10 figs, revtex4, 1 Ref. added, minor typos corrected, to appear in Phys. Rev.

    Kaluza-Klein Gluons as a Diagnostic of Warped Models

    Full text link
    We study the properties of g1g^{1}, the first excited state of the gluon in representative variants of the Randall Sundrum model with the Standard Model fields in the bulk. We find that measurements of the coupling to light quarks (from the inclusive cross-section for pp→g1→ttˉpp\to g^{1} \to t\bar t), the coupling to bottom quarks (from the rate of pp→g1bpp\to g^{1} b), as well as the overall width, can provide powerful discriminants between the models. In models with large brane kinetic terms, the g1g^1 resonance can even potentially be discovered decaying into dijets against the large QCD background. We also derive bounds based on existing Tevatron searches for resonant ttˉt \bar{t} production and find that they require Mg1≳950M_{g^{1}} \gtrsim 950 GeV. In addition we explore the pattern of interference between the g1g^1 signal and the non-resonant SM background, defining an asymmetry parameter for the invariant mass distribution. The interference probes the relative signs of the couplings of the g1g^{1} to light quark pairs and to ttˉt\bar t, and thus provides an indication that the top is localized on the other side of the extra dimension from the light quarks, as is typical in the RS framework.Comment: 25 pages, 10 figure

    SUSY Decays of Higgs Particles

    Get PDF
    Among the possible decay modes of Higgs particles into supersymmetric states, neutralino and chargino decays play a prominent r\^ole. The experimental opportunities of observing such decay modes at LEP2 and at future e+e- linear colliders are analyzed within the frame of the Minimal Supersymmetric extension of the Standard Model. For heavy Higgs particles, the chargino/neutralino decay modes can be very important, while only a small window is open for the lightest CP-even Higgs particle. If charginos/neutralinos are found at LEP2, such decay modes can be searched for in a small area of the parameter space, and invisible decays may reduce the exclusion limits of the lightest CP-even Higgs particle slightly; if charginos/neutralinos are not found at LEP2 in direct searches, the Higgs search will not be affected by the SUSY particle sector.Comment: 13 pages including 4 figures, uses latex and (e)psfig.st

    Z-prime Gauge Bosons at the Tevatron

    Full text link
    We study the discovery potential of the Tevatron for a Z-prime gauge boson. We introduce a parametrization of the Z-prime signal which provides a convenient bridge between collider searches and specific Z-prime models. The cross section for p pbar -> Z-prime X -> l^+ l^- X depends primarily on the Z-prime mass and the Z-prime decay branching fraction into leptons times the average square coupling to up and down quarks. If the quark and lepton masses are generated as in the standard model, then the Z-prime bosons accessible at the Tevatron must couple to fermions proportionally to a linear combination of baryon and lepton numbers in order to avoid the limits on Z--Z-prime mixing. More generally, we present several families of U(1) extensions of the standard model that include as special cases many of the Z-prime models discussed in the literature. Typically, the CDF and D0 experiments are expected to probe Z-prime-fermion couplings down to 0.1 for Z-prime masses in the 500--800 GeV range, which in various models would substantially improve the limits set by the LEP experiments.Comment: 34 pages, 13 figure

    On the two-loop Yukawa corrections to the MSSM Higgs boson masses at large tan(beta)

    Full text link
    We complete the effective potential calculation of the two-loop, top/bottom Yukawa corrections to the Higgs boson masses in the Minimal Supersymmetric Standard Model, by computing the O(at^2 + at*ab + ab^2) contributions for arbitrary values of the bottom Yukawa coupling. We also compute the corrections to the minimization conditions of the effective potential at the same perturbative order. Our results extend the existing O(at^2) calculation, and are relevant in regions of the parameter space corresponding to tan(beta) >> 1. We extend to the Yukawa corrections a convenient renormalization scheme, previously proposed for the O(ab*as) corrections, that avoids unphysically large threshold effects associated with the bottom mass and absorbs the bulk of the corrections into the one-loop expression. For large values of tan(beta), the new contributions can account for a variation of several GeV in the lightest Higgs boson mass.Comment: 19 pages, 4 eps figures. Some formulae corrected in the Appendi

    Do electroweak precision data and Higgs-mass constraints rule out a scalar bottom quark with mass of O(5 GeV)?

    Get PDF
    We investigate the phenomenological implications of a light scalar bottom quark, with a mass of about the bottom quark mass, within the minimal supersymmetric standard model. The study of such a scenario is of theoretical interest, since, depending on their production and decay modes, light sbottoms may have escaped experimental detection up to now and, in addition, may naturally appear for large values of \tan\beta. In this article we show that such a light sbottom cannot be ruled out by the constraints from the electroweak precision data and the present bound on the lightest CP-even Higgs boson mass at LEP. It is inferred that a light sbottom scenario requires in general a relatively light scalar top quark whose mass is typically about the top-quark mass. It is also shown that under these conditions the lightest CP-even Higgs boson decays predominantly into scalar bottom quarks in most of the parameter space and that its mass is restricted to m_h ~< 123 GeV.Comment: 7 pages, 2 figures, LateX. Discussion about fine tuning and low-energy experiments enlarged. Version to appear in Phys. Rev. Let

    Gravitons and Dark Matter in Universal Extra Dimensions

    Get PDF
    Models of Universal Extra Dimensions (UED) at the TeV scale lead to the presence of Kaluza Klein (KK) excitations of the ordinary fermions and bosons of the Standard Model that may be observed at hadron and lepton colliders. A conserved discrete symmetry, KK-parity, ensures the stability of the lightest KK particle (LKP), which, if neutral, becomes a good dark matter particle. It has been recently shown that for a certain range of masses of the LKP a relic density consistent with the experimentally observed one may be obtained. These works, however, ignore the impact of KK graviton production at early times. Whether the G^1 is the LKP or not, the G^n tower thus produced can decay to the LKP, and depending on the reheating temperature, may lead to a modification of the relic density. In this article, we show that this effect may lead to a relevant modification of the range of KK masses consistent with the observed relic density. Additionally, if evidence for UED is observed experimentally, we find a stringent upper limit on the reheating temperature depending on the mass of the LKP observed.Comment: References added. 38 pages, 18 figures. Submitted to Phys. Rev.

    Weakly coupled neutral gauge bosons at future linear colliders

    Full text link
    A weakly coupled new neutral gauge boson forms a narrow resonance that is hard to discover directly in e+e- collisions. However, if the gauge boson mass is below the center-of-mass energy, it can be produced through processes where the effective energy is reduced due to initial-state radiation and beamstrahlung. It is shown that at a high-luminosity linear collider, such a gauge boson can be searched for with very high sensitivity, leading to a substantial improvement compared to existing limits from the Tevatron and also extending beyond the expected reach of the LHC in most models. If a new vector boson is discovered either at the Tevatron Run II, the LHC or the linear collider, its properties can be determined at the linear collider with high precision, thus helping to reveal origin of the new boson.Comment: 21 p

    Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios

    Full text link
    Tantalizing hints of the Higgs boson of mass around 125 GeV have been reported at the LHC. We explore the MSSM parameter space in which the 125 GeV state is identified as the heavier of the CP even Higgs bosons, and study two scenarios where the two photon production rate can be significantly larger than the standard model (SM). In one scenario, Γ(H→γγ)\Gamma(H\to \gamma\gamma) is enhanced by a light stau contribution, while the WW∗WW^{\ast} (ZZ∗ZZ^{\ast}) rate stays around the SM rate. In the other scenario, Γ(H→bbˉ)\Gamma(H\to b\bar{b}) is suppressed and not only the γγ\gamma\gamma but also the WW∗WW^{\ast} (ZZ∗ZZ^{\ast}) rates should be enhanced. The ττˉ\tau\bar{\tau} rate can be significantly larger or smaller than the SM rate in both scenarios. Other common features of the scenarios include top quark decays into charged Higgs boson, single and pair production of all Higgs bosons in e+e−e^+e^- collisions at s≲300\sqrt{s}\lesssim 300 GeV.Comment: 20 pages, 5 figures, accepted version for publication in JHE
    • …
    corecore