7 research outputs found
Pro-inflammatory monocyte phenotype and cell-specific steroid signaling alterations in unmedicated patients with major depressive disorder
Several lines of evidence have strongly implicated inflammatory processes in the pathobiology of major depressive disorder (MDD). However, the cellular origin of inflammatory signals and their specificity remain unclear. We examined the phenotype and glucocorticoid signaling in key cell populations of the innate immune system (monocytes) vs. adaptive immunity (T cells) in a sample of 35 well-characterized, antidepressant-free patients with MDD and 35 healthy controls individually matched for age, sex, smoking status and body mass index. Monocyte and T cell phenotype was assessed by flow cytometry. Cell-specific steroid signaling was determined by mRNA expression of pre-receptor regulation (11 beta-hydroxysteroid dehydrogenase type 1; 11 beta-HSD1), steroid receptor expression [glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)], and the downstream target glucocorticoid-induced leucine-zipper (GILZ). We also collected salivary cortisol samples (8:00 a.m. and 10:00 p.m.) on two consecutive days. Patients showed a shift toward a pro-inflammatory phenotype characterized by higher frequency and higher absolute numbers of non-classical monocytes. No group differences were observed in major T cell subset frequencies and phenotype. Correspondingly, gene expression indicative of steroid resistance (i.e., lower expression of GR and GILZ) in patients with MDD was specific to monocytes and not observed in T cells. Monocyte phenotype and steroid receptor expression was not related to cortisol levels or serum levels of IL-6, IL-1 beta, or TNF-alpha. Our results thus suggest that in MDD, cells of the innate and adaptive immune system are differentially affected with shifts in monocyte subsets and lower expression of steroid signaling related genes
Pro-inflammatory monocyte phenotype and cell-specific steroid signaling alterations in unmedicated patients with major depressive disorder
Several lines of evidence have strongly implicated inflammatory processes in the pathobiology of major depressive disorder (MDD). However, the cellular origin of inflammatory signals and their specificity remain unclear. We examined the phenotype and glucocorticoid signaling in key cell populations of the innate immune system (monocytes) vs. adaptive immunity (T cells) in a sample of 35 well-characterized, antidepressant-free patients with MDD and 35 healthy controls individually matched for age, sex, smoking status and body mass index. Monocyte and T cell phenotype was assessed by flow cytometry. Cell-specific steroid signaling was determined by mRNA expression of pre-receptor regulation (11 beta-hydroxysteroid dehydrogenase type 1; 11 beta-HSD1), steroid receptor expression [glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)], and the downstream target glucocorticoid-induced leucine-zipper (GILZ). We also collected salivary cortisol samples (8:00 a.m. and 10:00 p.m.) on two consecutive days. Patients showed a shift toward a pro-inflammatory phenotype characterized by higher frequency and higher absolute numbers of non-classical monocytes. No group differences were observed in major T cell subset frequencies and phenotype. Correspondingly, gene expression indicative of steroid resistance (i.e., lower expression of GR and GILZ) in patients with MDD was specific to monocytes and not observed in T cells. Monocyte phenotype and steroid receptor expression was not related to cortisol levels or serum levels of IL-6, IL-1 beta, or TNF-alpha. Our results thus suggest that in MDD, cells of the innate and adaptive immune system are differentially affected with shifts in monocyte subsets and lower expression of steroid signaling related genes
T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder
While a link between inflammation and the development of neuropsychiatric
disorders, including major depressive disorder (MDD) is supported by a growing
body of evidence, little is known about the contribution of aberrant adaptive
immunity in this context. Here, we conducted in-depth characterization of T
cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-
sectional case–control study, we recruited antidepressant-free patients with
MDD without any somatic or psychiatric comorbidities (n = 20), who were
individually matched for sex, age, body mass index, and smoking status to a
non-depressed control subject (n = 20). T cell phenotype and repertoire were
interrogated using a combination of flow cytometry, gene expression analysis,
and next generation sequencing. T cells from MDD patients showed significantly
lower surface expression of the chemokine receptors CXCR3 and CCR6, which are
known to be central to T cell differentiation and trafficking. In addition, we
observed a shift within the CD4+ T cell compartment characterized by a higher
frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in
purified CD4+ T cells obtained from patients with MDD. Finally, flow
cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T
cell repertoire in MDD, which was corroborated by next generation sequencing
of the TCR β chain CDR3 region. Overall, these results suggest that T cell
phenotype and TCR utilization are skewed on several levels in patients with
MDD. Our study identifies putative cellular and molecular signatures of
dysregulated adaptive immunity and reinforces the notion that T cells are a
pathophysiologically relevant cell population in this disorder
Pro-inflammatory Monocyte Phenotype and Cell-Specific Steroid Signaling Alterations in Unmedicated Patients With Major Depressive Disorder
Several lines of evidence have strongly implicated inflammatory processes in the pathobiology of major depressive disorder (MDD). However, the cellular origin of inflammatory signals and their specificity remain unclear. We examined the phenotype and glucocorticoid signaling in key cell populations of the innate immune system (monocytes) vs. adaptive immunity (T cells) in a sample of 35 well-characterized, antidepressant-free patients with MDD and 35 healthy controls individually matched for age, sex, smoking status and body mass index. Monocyte and T cell phenotype was assessed by flow cytometry. Cell-specific steroid signaling was determined by mRNA expression of pre-receptor regulation (11β-hydroxysteroid dehydrogenase type 1; 11β -HSD1), steroid receptor expression [glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)], and the downstream target glucocorticoid-induced leucine-zipper (GILZ). We also collected salivary cortisol samples (8:00 a.m. and 10:00 p.m.) on two consecutive days. Patients showed a shift toward a pro-inflammatory phenotype characterized by higher frequency and higher absolute numbers of non-classical monocytes. No group differences were observed in major T cell subset frequencies and phenotype. Correspondingly, gene expression indicative of steroid resistance (i.e., lower expression of GR and GILZ) in patients with MDD was specific to monocytes and not observed in T cells. Monocyte phenotype and steroid receptor expression was not related to cortisol levels or serum levels of IL-6, IL-1β, or TNF-α. Our results thus suggest that in MDD, cells of the innate and adaptive immune system are differentially affected with shifts in monocyte subsets and lower expression of steroid signaling related genes
Postpartum relapse risk in multiple sclerosis: a systematic review and meta-analysis
The influence of pregnancy on the course of multiple sclerosis (MS) has long been controversial. While historical evidence suggests a substantial decline in relapse rates during pregnancy followed by a rebound in the postpartum period, more recent work yielded equivocal results. We performed a systematic review and meta-analysis on data from cohort studies to determine whether women with MS experience increased relapse rates after delivery. A systematic literature search was conducted in the databases MEDLINE and Epistemonikos on the topic ‘motherhood choice in MS’ in March 2022. We included cohort studies assessing the association between pregnancy and MS relapse activity defined by the annualised relapse rate after 3, 6, 9 and 12 months post partum. Furthermore, information about disease-modifying therapies (DMT) and breast feeding was considered, if available. 5369 publications were identified. Of these, 93 full-text articles on MS relapse activity during the postpartum period were screened. 11 studies including 2739 pregnancies were eligible. Women with MS showed a significantly increased relapse rate in the first 6 months post partum, compared with preconception with the incidence rate ratio (IRR) almost doubled in the first 3 months post partum (1.87, 95% CI 1.40 to 2.50). However, at 10–12 months post partum, the IRR decreased significantly (0.81, 95% CI 0.67 to 0.98). Subanalysis on influencing parameters suggested that preconceptional DMTs (IRR for highly-effective DMTs 2.76, 95% CI 1.34 to 5.69) and exclusive breast feeding (risk ratio 0.39, 95% CI 0.18 to 0.86) significantly influenced postpartum relapse risk. Increased postpartum annualised relapse rate and possible modifiers should be considered in counselling women with MS who are considering pregnancy.http://dx.doi.org/10.13039/501100001659 Deutsche Forschungsgemeinschaf
Physical fitness moderates the association between brain network impairment and both motor function and cognition in progressive multiple sclerosis
International audienc
Data_Sheet_1.PDF
<p>While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4<sup>+</sup> T cell compartment characterized by a higher frequency of CD4<sup>+</sup>CD25<sup>high</sup>CD127<sup>low/−</sup> cells and higher FOXP3 mRNA expression in purified CD4<sup>+</sup> T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4<sup>+</sup> T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.</p