981 research outputs found

    One month of cocaine abstinence potentiates rapid dopamine signaling in the nucleus accumbens core

    Get PDF
    Cocaine addiction is a chronic relapsing disorder that is difficult to treat in part because addicts relapse even after extended periods of abstinence. Given the importance of the mesolimbic dopamine (DA) system in drug addiction, we sought to characterize cocaine abstinence induced changes in rapid DA signaling in the nucleus accumbens (NAc). Here, rats were trained to self-administer cocaine for 14 consecutive days, then divided into two groups. Day 1 rats (D1; n = 7) underwent 24 hours of abstinence; Day 30 rats (D30; n = 7) underwent one month of abstinence. After abstinence, all rats underwent a single extinction session. Immediately after, rats were deeply anesthetized and fast scan cyclic voltammetry (FSCV) was used to measure DA release and uptake dynamics in the NAc core before and following a single cocaine injection. We show that one month of cocaine abstinence potentiates the peak concentration of electrically evoked DA in the NAc core following an acute injection of cocaine. This potentiation is not related to alterations in DA uptake parameters, which are unchanged following abstinence, but may reflect alterations in release. These results further support the abundance of literature showing that cocaine abstinence induces neuroplasticity in brain areas implicated in drug reward and relapse. The present findings also demonstrate critical differences between abstinence-induced neuroadaptations in DA signaling and those caused by drug exposure itself

    Superconducting tunable flux qubit with direct readout scheme

    Full text link
    We describe a simple and efficient scheme for the readout of a tunable flux qubit, and present preliminary experimental tests for the preparation, manipulation and final readout of the qubit state, performed in incoherent regime at liquid Helium temperature. The tunable flux qubit is realized by a double SQUID with an extra Josephson junction inserted in the large superconducting loop, and the readout is performed by applying a current ramp to the junction and recording the value for which there is a voltage response, depending on the qubit state. This preliminary work indicates the feasibility and efficiency of the scheme.Comment: 10 pages, 5 figure

    Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation

    Get PDF
    The mesolimbic dopamine system is critically involved in modulating reward-seeking behavior and is transiently activated upon presentation of reward-predictive cues. It has previously been shown, using fast-scan cyclic voltammetry in behaving rats, that cues predicting a variety of reinforcers including food/water, cocaine or intracranial self-stimulation (ICSS) elicit time-locked transient fluctuations in dopamine concentration in the nucleus accumbens (NAc) shell. These dopamine transients have been found to correlate with reward-related learning and are believed to promote reward-seeking behavior. Here, we investigated the effects of varying reinforcer magnitude (intracranial stimulation parameters) on cue-evoked dopamine release in the NAc shell in rats performing ICSS. We found that the amplitude of cue-evoked dopamine is adaptable, tracks reinforcer magnitude and is significantly correlated with ICSS seeking behavior. Specifically, the concentration of cue-associated dopamine transients increased significantly with increasing reinforcer magnitude, while, at the same time, the latency to lever press decreased with reinforcer magnitude. These data support the proposed role of NAc dopamine in the facilitation of reward-seeking and provide unique insight into factors influencing the plasticity of dopaminergic signaling during behavior

    Rapid Dopamine Signaling Differentially Modulates Distinct Microcircuits within the Nucleus Accumbens during Sucrose-Directed Behavior

    Get PDF
    The mesolimbic dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is critical in mediating reward-related behaviors, but the precise role of dopamine in this process remains unknown. We completed a series of studies to examine whether coincident changes occur in NAc cell firing and rapid dopamine release during goal-directed behaviors for sucrose and if so, to determine if the two are causally linked. We show that distinct populations of NAc neurons differentially encode sucrose-directed behaviors, and using a combined electrophysiology/electrochemistry technique, further show that it is at those locations that rapid dopamine signaling is observed. To determine causality, NAc cell firing was recorded during selective pharmacological inactivation of dopamine burst firing using the NMDA receptor antagonist, AP-5. We show that phasic dopamine selectively modulates excitatory but not inhibitory responses of NAc neurons during sucrose-seeking behavior. Thus, rapid dopamine signaling does not exert global actions in the NAc but selectively modulates discrete NAc microcircuits that ultimately influence goal-directed actions

    Phase Transition Study of Superconducting Microstructures

    Full text link
    The presented results are part of a feasibility study of superheated superconducting microstructure detectors. The microstructures (dots) were fabricated using thin film patterning techniques with diameters ranging from 50μ50\mum up to 500μ500\mum and thickness of 1μ1\mum. We used arrays and single dots to study the dynamics of the superheating and supercooling phase transitions in a magnetic field parallel to the dot surface. The phase transi- tions were produced by either varying the applied magnetic field strength at a constant temperature or changing the bath temperature at a constant field. Preliminary results on the dynamics of the phase transitions of arrays and single indium dots will be reported.Comment: 7pages in LaTex format, five figures available upon request by [email protected], preprint Bu-He 93/

    Pilocytic Astrocytoma Following Radiotherapy For Craniopharyngioma: Case Report.

    Get PDF
    Administration of fractionated doses of irradiation is part of the adjutant therapy for CNS tumours such as craniopharyngiomas and pituitary adenomas. It can maximise cure rates or expand symptom-free period. Among the adverse effects of radiotherapy, the induction of a new tumour within the irradiated field has been frequently described. The precise clinical features that correlate irradiation and oncogenesis are not completely defined, but some authors have suggested that tumors are radiation induced when they are histologically different from the treated ones, arise in greater frequency in irradiated patients than among normal population and tend to occur in younger people with an unusual aggressiveness. In this article, we report a case of a papillary astrocytoma arising in a rather unusual latency period following radiotherapy for craniopharyngioma.58731-
    corecore