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Abstract
The mesolimbic dopamine system is critically involved in modulating reward-seeking behavior
and is transiently activated upon presentation of reward-predictive cues. It has previously been
shown, using fast-scan cyclic voltammetry in behaving rats, that cues predicting a variety of
reinforcers including food/water, cocaine or intracranial self-stimulation (ICSS) elicit time-locked
transient fluctuations in dopamine concentration in the nucleus accumbens (NAc) shell. These
dopamine transients have been found to correlate with reward-related learning and are believed to
promote reward-seeking behavior. Here, we investigated the effects of varying reinforcer
magnitude (intracranial stimulation parameters) on cue-evoked dopamine release in the NAc shell
in rats performing ICSS. We found that the amplitude of cue-evoked dopamine is adaptable, tracks
reinforcer magnitude and is significantly correlated with ICSS seeking behavior. Specifically, the
concentration of cue-associated dopamine transients increased significantly with increasing
reinforcer magnitude, while, at the same time, the latency to lever press decreased with reinforcer
magnitude. These data support the proposed role of NAc dopamine in the facilitation of reward-
seeking and provide unique insight into factors influencing the plasticity of dopaminergic
signaling during behavior.
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Introduction
The mesolimbic dopamine system is believed to play an essential role in modulating goal-
directed behaviors and has been implicated in reinforcement learning (Hollerman and
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Schultz, 1998, Dayan and Balleine, 2002, Day et al., 2007, Owesson-White et al., 2008).
Electrophysiological data have shown that midbrain dopamine neurons are transiently
activated by the delivery of unexpected, primary rewards and also by cues that predict
rewards (Schultz et al., 1997, Hyland et al., 2002). Similarly, data from fast-scan cyclic
voltammetric recordings have revealed that cues associated with a variety of rewards,
including cocaine, sucrose, and intracranial stimulation elicit time-locked dopamine
transients in the NAc (Phillips et al., 2003b, Roitman et al., 2004, Day et al., 2007,
Owesson-White et al., 2008). Indeed, the fluctuations in dopamine concentration in the
extracellular fluid of the NAc are a direct consequence of increased phasic activity in the
ventral tegmental area (VTA) (Sombers et al., 2009). The dopaminergic signal resulting
from the activation of dopamine neurons is thought to then guide decision making and
modulate reward-seeking behavior (Goto and Grace, 2005, Nicola et al., 2005, Morris et al.,
2006).

The degree of dopamine activation in response to reward-predictive cues has been found to
reflect salient information about predicted rewards, including the probability and timing of
their occurrence (Fiorillo et al., 2003, Kobayashi and Schultz, 2008). Furthermore,
electrophysiology studies have shown that cues predicting larger reinforcer magnitudes elicit
greater activation of dopamine neurons than cues that predict smaller reinforcer magnitudes,
suggesting that dopamine neurons encode important information related to the amount of
impending rewards (Tobler et al., 2005, Roesch et al., 2007). These findings have recently
been supported by measurements of transient dopamine release events in the NAc core
during reward presentation (Gan et al., 2010). However, it remains to be shown whether
these adaptive changes in neural activation also manifest themselves in the NAc shell. This
is particularly important since recent anatomical data show that distinct subregions of the
VTA send differential projections to particular subregions of the NAc (Ikemoto, 2007), and
a one-to-one correspondence between VTA dopamine cell firing and dopamine release is not
always evident (Montague et al., 2004, Kita et al., 2007).

Here, we used fast-scan cyclic voltammetry at carbon-fiber microelectrodes to examine the
effect of reinforcer magnitude on cue-evoked dopamine release in the shell of the NAc, a
key dopamine terminal region. This electrochemical technique enables detection of
dopamine release with subsecond temporal resolution (Robinson et al., 2003) in ‘real-time’
during behavior. The behavioral paradigm employed is intracranial self-stimulation (ICSS),
in which a rat depresses a lever to electrically stimulate select brain pathways (Wise, 2004).
We have previously shown that cue-evoked dopamine release in the NAc shell is associated
with ICSS and that the cue-evoked signal develops with learning (Owesson-White et al.,
2008). Here we show that the concentration of cue-associated dopamine transients increases
significantly with increasing reinforcer (current) magnitude. Furthermore, increases in cue-
evoked dopamine were significantly correlated with shorter latencies to lever press, further
establishing a role for dopamine in the facilitation of learned, reward-seeking behavior
(Nicola et al., 2005).

Methods
Surgical Procedures

Male, Sprague-Dawley rats were individually housed on a 12:12 hour light:dark cycle and
allowed ad libitum access to food and water. Animals were anesthetized with intraperitoneal
injections of ketamine (100 mg/kg) and xylazine (20 mg/kg). Bupivicaine was used as a
local analgesic. Stereotaxic surgeries were performed using aseptic, flat-skull technique
using coordinates from a stereotaxic atlas (Paxinos and Watson, 2007). Surgical procedures
have been described previously (Phillips et al., 2003a). Briefly, guide cannulae
(Bioanalytical Systems, West Lafayette, IN) were cut to 2.5 mm and implanted above the
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NAc shell (1.7 mm anterior, 0.8 mm lateral, relative to bregma). Bipolar, stainless-steel
stimulating electrodes (Plastics One, Roanoke, VA) were ipsilaterally implanted in the
lateral hypothalamus (2.8 mm posterior, 1.7 mm lateral relative to bregma, and 8.4 mm
ventral from dura) and Ag/AgCl reference electrodes were placed in the contralateral
hemisphere. Skull screws and cranioplastic cement were used to secure electrode
placements. Animals were given at least 3 days to recover. These procedures were in
accordance with guidelines set forth by The University of North Carolina at Chapel Hill
Animal Care and Use Committee.

Behavioral Procedures
Animals were placed in an operant chamber and given 5 min to acclimate. They were then
attached, via a flexible cable, to a commutator secured to the top of the chamber that
allowed for both voltammetric recording and electrical stimulation. An additional
acclimation period of 5 min was given before the first phase of ICSS training commenced in
which rats were trained to press a continuously available lever on a fixed-ratio 1 (FR1)
reinforcement schedule for ICS. In all experiments described here, each lever press resulted
in the delivery of a 60 Hz stimulation (24 biphasic pulses, 2 ms for each phase). The
stimulation was delivered within 0.1-0.2 s after the lever press. During initial training phase
the current was 100 -150 μA, a current range found to promote ICSS learning (Owesson-
White et al., 2008). Once rats exhibited stable responding (30 consecutive lever presses), the
session was stopped, the lever was retracted, and the next phase of training commenced.

Next, a threshold curve was determined for each animal (n=6) to establish their low,
medium and high reinforcer magnitude levels (Gallistel and Leon, 1991, Gallistel et al.,
1991, Simmons and Gallistel, 1994, Arvanitogiannis and Shizgal, 2008). This was
accomplished by measuring the number of reinforced presses in separate 1 min intervals for
different stimulation currents. Specifically, each rat was given free access to the lever that
remained extended throughout this phase. Stimulation currents were varied randomly
between intervals and ranged from 16 to 200 μA in 0.1 log unit increments while the number
of lever presses at each current was recorded. For each animal, medium magnitudes were set
at currents that produced maximal responding. Currents that produced half-maximal
responding to the left and right of the maximum were chosen as the low and high
magnitudes, respectively. In this manner, a low, medium, and high magnitude was
established for each individual animal for further evaluation in the VTO paradigm.

Rats were then trained to perform ICSS on an FR1 with a variable intertrial interval. The
variable time-out (VTO, the times were normally distributed values between 5 and 25 s;
longer intervals led to difficulty in maintaining the behavior) procedure was identical to that
described previously (Owesson-White et al., 2008). During the first 50 trials, lever extension
was accompanied by simultaneous presentation of an audio-visual cue (a 67 dB, 1 kHz tone
coupled with a change in the lighting of the experimental chamber). Depression of the lever
delivered the stimulus train (the current during this training was at the medium level for the
particular animal). For the next 150 trials, the audio-visual cue preceded lever extension by
2 s. When training for the VTO schedule was complete, a fresh carbon-fiber microelectrode
was lowered into the NAc shell for voltammetric recording and an optimal recording site
was identified (see below). The animal was then allowed to perform ICSS on the same VTO
schedule with the audio-visual cue preceding lever extension by 2 s. Each rat was given
three distinct and consecutive ICSS sessions comprised of 70 trials that used low, medium,
or high stimulation currents. These sessions were randomly ordered (i.e. low-medium-high,
low-high-medium, etc) and were separated by 5 minutes. The same audio-visual cue was
used for all stimulation currents. After the recording sessions the animals were sacrificed.
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Voltammetric Recording
Microelectrodes were prepared by aspirating T650 carbon fibers (6 μm diameter, Amoco)
into thin glass capillaries (0.6 mm outer diameter, 0.4 mm inner diameter, A-M Systems).
Filled glass capillaries were then pulled in a vertical puller (Narishige, Tokyo, Japan) and
the exposed carbon fiber tip was cut to 75 μm - 100 μm. For electrochemical recordings, a
triangular waveform (-0.4 V to +1.3 V vs. Ag/AgCl) was applied at 400 V/s to the carbon-
fiber microelectrode every 100 ms. Optimal recording sites within the NAc shell were
sought by incrementally lowering the electrode through the NAc and measuring electrically
evoked dopamine release, ensuring placement in an area rich in active dopamine terminals.
After use, electrodes were calibrated in an in vitro flowcell system to enable conversion of
dopamine current measurements into concentration units. Principal component regression
was used to resolve recorded dopamine signals from interfering species, namely pH (Heien
et al., 2004, Heien et al., 2005). Amplitudes of released dopamine were characterized using
MiniAnalysis software (Synaptosoft, version 6.03).

Data Analysis
Maximal cue and stimulated mean dopamine concentrations were compared across low
medium, and high trials using a repeated measures one-way Analysis of Variance
(ANOVA), followed by Tukey's post hoc test. Linear regression was used to evaluate
maximal dopamine concentration changes as a function of stimulation current for both
stimulated and cue-evoked release. Linear regression was also used to evaluate the
relationship between latency to lever press and the amplitude of maximal cue evoked
dopamine concentration. Statistical significance was set to p < 0.05.

Results
Determination of ‘Low’, ‘Medium’ and ‘High’ current parameters for ICSS using the
threshold curve procedure

As shown in Figure 1, stimulation current amplitude was found to play an important role in
lever pressing behavior during ICSS. When given free access to a permanently extended
lever, lever presses were infrequent at stimulation currents of 40 μA or less. The lever
pressing rate increased at 50 μA and reached a plateau at higher stimulation currents. At the
highest current evaluated, 200 μA, lever pressing rate decreased. However, the decrease in
lever press rate at this current was accompanied by a strong physical reaction of the rat to
the stimulation. Reflexively, the animal moved away from the lever after each press. Based
on these data we selected three stimulation intensities for each individual animal for further
evaluation using the VTO paradigm. The average stimulation currents used in all animals
were 67 μA ± 8.71, 115 μA ± 11.4, and 186.67 μA ± 8.43, which were defined as low,
medium, and high, respectively.

Dynamic changes in dopamine release occur in response to the reward-predictive cue
during ICSS

Following the threshold curve procedure, cue- and stimulation-evoked dopamine responses
were determined using fast-scan cyclic voltammetry during ICSS for the low, medium and
high currents on the VTO schedule. The time course of the VTO reinforcement schedule is
given in Figure 2A (top). Each trial began with the onset of an audio-visual cue that
preceded lever extension by 2 s. Once the lever was pressed, it retracted, the stimulation was
delivered and the audio-visual cue was terminated. Trials were separated by a VTO of 5 s -
25 s. As shown in the representative color plot from a single trial in a well-trained animal,
cue onset elicited a time-locked increase in dopamine release (Figure 2A, center).
Electrically stimulated dopamine release was also readily observed immediately following
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the lever press. A corresponding trace of the dopamine concentration with time (resulting
from principal component regression of these data) is shown for this trial just below the
color plot (Figure 2A, bottom).

For each animal, individual trials within each reinforcer magnitude session were averaged to
examine the mean dopaminergic response in each condition. An average electrochemical
signal observed in a high reinforcer magnitude session for one animal is shown in a
representative color plot in Figure 2B. The corresponding concentration trace for dopamine
is also displayed. Cue-evoked dopamine release occurred in a tightly time-locked fashion
with the initial rise beginning directly after cue onset. Electrically evoked dopamine release
was observed following the lever press. Thus, consistent with our prior reports, a transient,
time-locked increase in dopamine concentration occurs in the NAc shell upon presentation
of a cue that predicts ICSS availability (Owesson-White et al., 2008, Sombers et al., 2009).

Adaptations in cue-evoked dopamine release closely follow transitions in reinforcer
magnitude

The amplitude of cue-evoked dopamine release in the NAc reflects the magnitude of the
predicted reinforcer (Figure 3). Figure 3A displays representative average dopamine
concentration traces for the low, medium, and high reinforcer magnitude sessions from a
single animal. Individual trial maximal concentration values averaged across all animals are
shown in Figure 3B. Note that the amount of dopamine released, both in response to cue
onset (Figure 3B, upper panels) and the electrical stimulation (Figure 3B, lower panels),
increases significantly with increasing reinforcer magnitude (cue-evoked dopamine: High >
Medium > Low, p < 0.001, one-way ANOVA F(2, 59) = 1.38; stimulated dopamine: High >
Medium > Low, p < 0.001 oneway ANOVA F(2, 69) = 1.80). The mean ± SEM values for
cue-evoked and stimulated dopamine release are given in Table 1.

For each animal, the average maximal concentration for cue- and stimulation-evoked
dopamine release was determined at each stimulation intensity. Dopamine concentrations
are plotted against stimulus current intensity in Figure 4A. Both stimulated release and cue-
evoked dopamine release increase linearly with stimulation current, but with slopes that are
significantly different (p < 0.001).

Cue-evoked dopamine release in the NAc is inversely correlated with latency to press
during ICSS

In addition to modulating rapid dopamine signaling, reinforcer magnitude also significantly
affected the average latency to lever press for ICSS. The average latency to press decreased
significantly with increasing reinforcer magnitude (low > medium, p < 0.001, medium >
high, p < 0.05, one-way ANOVA F(2, 69) = 1.28, Table 1). Moreover, the latency to lever
press was found to significantly correlate with the amplitude of cue-evoked dopamine
release in an inverse manner (r2 = 0.337, p = 0.023, Figure 4B). Thus, higher levels of cue-
associated dopamine were correlated with shorter latencies to press and vice versa.

Discussion
Reward-predictive cues activate midbrain dopaminergic neurons and elicit time-locked,
transient increases in dopamine release in terminal regions (Schultz et al., 1997, Hyland et
al., 2002, Phillips et al., 2003b, Roitman et al., 2004, Day et al., 2007, Owesson-White et al.,
2008). Furthermore, the degree of activation of these dopaminergic neurons has been found
to vary with the magnitude of the anticipated reinforcer (Tobler et al., 2005). Cues that
predict larger reinforcer magnitudes produce more pronounced activation of dopamine
neurons than cues that predict smaller reinforcer magnitudes (Tobler et al., 2005, Roesch et
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al., 2007). In the NAc core, the amplitude of cue-induced dopamine concentration transients
scales with the magnitude of an anticipated reward (Gan et al., 2010). Thus, dopamine
neurons appear to be conditional output neurons that reflect salient reward-related
information in their patterns of activity. Here, we show that the amplitude of cue-evoked
dopamine release in the NAc shell, a key dopamine terminal region, reflects impending
reinforcer magnitude. We also found a significant correlation between the amplitude of cue-
evoked dopamine release in the NAc shell and the latency to lever press for ICSS. Together,
our results provide unique insight into the adaptable nature of dopaminergic signaling in a
key terminal region and demonstrate an integral role of cue-evoked dopamine in reward-
seeking behavior.

Discovered in 1954, ICSS has been widely used to investigate goal-directed behavior and to
identify brain structures involved in mediating reinforcement (Olds and Milner, 1954, Olds
and Olds, 1963, Simon et al., 1975, Corbett and Wise, 1980, Wise, 1996, Waraczynski,
2006). In this behavioral paradigm, animals are trained to perform an operant response,
typically a lever press, to deliver an electrical stimulation to select brain areas. An advantage
of ICSS is that it directly activates neural circuits involved in reward, bypassing normal
physiological inputs (Wise, 1996). Thus, the precise timing and magnitude of reinforcement
delivery can be tightly controlled and measured. Several pioneering studies in the field have
shown that the magnitude of experienced reinforcement during ICSS is a function of both
stimulation current and pulse frequency (Gallistel and Leon, 1991, Gallistel et al., 1991,
Simmons and Gallistel, 1994, Arvanitogiannis and Shizgal, 2008). It has been hypothesized
that the maximum possible reward during ICSS can be attained by manipulating stimulation
current (Waraczynski and Kaplan, 1990, Gallistel et al., 1991, Sax and Gallistel, 1991).

Indeed, using a threshold curve procedure we found that stimulation current played an
influential role in lever pressing behavior. This approach enabled assessment of relative
reinforcer value for each animal. As shown in the threshold curve in Figure 1, the response
rate for ICSS was initially relatively low at the low stimulation currents and peaked at
~125μA before declining. However, the decline in lever press rate at the highest current
evaluated appeared to be controlled in part by the animals’ reflexive response to the
stimulation and not to a decrease in the reinforcing properties of the stimulation. To examine
this possibility, we used latency to lever press as a measure of reinforcer value (i.e., animals
respond faster for a more valued reinforcer). Indeed, the significant difference in the latency
to lever press between the high and the medium reinforcer magnitude conditions, observed
with the variable time-out schedule, indicates that the subjective reward value for the high
reinforcer magnitude was in fact higher (see Table 1).

With the VTO paradigm we have shown that, in a well-trained animal, presentation of an
audio-visual cue that predicts ICSS produces a transient increase in dopamine concentration
in the NAc shell. The association between transient dopamine release and cues that predict
lever availability develops in the NAc shell with repeated trials during acquisition of ICSS
(Owesson-White et al., 2008). This increase in cue-evoked dopamine concentration was
correlated with learning of the behavior, indicated by a significant decrease in the latency to
lever press in early trials, and is well learned after 200 trials. In addition to developing with
repeated stimulus-reward pairings during the course of learning, cue-evoked dopamine
release disappears within one trial during extinction of ICSS indicating that cue-evoked
dopamine release is dependent on a learned stimulus-reward association and is reinstated
just as rapidly (Owesson-White et al., 2008). In the NAc core, cue evoked release is not seen
on early trials (Cheer et al., 2007), and it develops at a slower rate than in the shell (data not
shown). There are also differences in the pattern of dopaminergic responses in the shell and
the core of the NAc to cues that predict cocaine delivery (Aragona et al., 2009). Thus, while

Beyene et al. Page 6

Neuroscience. Author manuscript; available in PMC 2011 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



it is clear that dopaminergic responses in the core and shell differ during learning, the
functional meaning of these differences is still unclear.

Here, we show that the amplitude of cue-evoked dopamine release in the NAc shell reflects
salient information about predicted reinforcer magnitude. In our experimental design the
audio-visual cue presented in all three of the reinforcer magnitude conditions was identical.
Thus, the same audio-visual cue was able to elicit differential amounts of dopamine release
based on the magnitude of the reinforcer it predicted. The ability of the same cue to exhibit
differential dopamine concentrations related to its association with reward magnitude may
be related to the power of ICS as a reinforcer. Regardless, our findings clearly demonstrate
that dopaminergic transmission in the NAc shell is highly adaptable in the encoding of
important information about future rewarding events, particularly reward magnitude.

An alternative explanation for the differential changes in cue-evoked dopamine release as a
function of reinforcer magnitude may be that the observed fluctuations in cue-evoked
dopamine release were strictly a physiological function of the electrical stimulations
delivered. For example, in the high reinforcer magnitude condition, where a high stimulation
current was delivered, it is possible that the intensity of the stimulation applied left the
neurons in a more excitable state. Thus, in the trial immediately following each high
amplitude stimulation, neurons could have an increased propensity to fire in response to cue
onset, resulting in higher amplitudes of cue-evoked dopamine release. To investigate this
possibility, we examined the relationship between cue-evoked and stimulated dopamine
release in each reinforcer magnitude condition. If cue-evoked dopamine were solely a
physiological function of the electrical stimulation, one would expect it to increase similarly
to stimulated release. However, this was not the case. The slopes of the lines through cue-
evoked and stimulated dopamine release values for all three magnitudes were significantly
different from one another (Figure 4B). Other potential confounds with the block design we
used include within block learning or variations in arousal. However, these aspects were not
apparent in the experimental results because dopamine responses to the cue remained
essentially constant during a session with a single reward magnitude. Thus, we believe that
the changes in the amplitude of cue-associated dopamine transients seen here reflect changes
in reward value rather than a simple physiological linking of the two sets of dopamine
release events.

We have previously shown that cue-evoked dopamine release in the NAc shell during ICSS
is dependent on phasic activation of dopamine neurons in the VTA (Sombers et al., 2009).
Midbrain dopamine neurons have been shown to report reward prediction errors such that
when a reward is better than predicted, the dopaminergic response is positive and an
increase in firing occurs (Schultz et al., 1997). Conversely, when a reward is worse than
predicted (or is omitted altogether) the dopaminergic response is negative and a depression
in firing occurs. Consistent with this, it has been found that the degree of phasic activation in
midbrain dopamine neurons varied monotonically with reinforcer magnitude (Tobler et al.,
2005). Similarly, cues that predict larger reinforcer magnitudes produce greater activation of
dopamine neurons than do cues predicting smaller reinforcer magnitudes (Tobler et al.,
2005). Our results indicate that dopamine release in the NAc shell reflects these changes in
neural firing, as cues that predicted higher reinforcer magnitudes consistently produced
greater amplitudes of dopamine release than cues that predicted smaller reinforcer
magnitudes. Our results are similar to those reported in the NAc core for food reward (Gan
et al., 2010). Taken together, these results give an unequivocal view that phasic
dopaminergic transmission in the NAc shell acts as a sensitive measure of reinforcer
magnitude. Future studies are needed to determine if dopamine release across other terminal
regions (e.g., dorsal striatum) similarly track reinforcer magnitude or if this action is unique
to the NAc.
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Figure 1. Reinforcer magnitude influences response rates for ICSS
The threshold curve shows the average number of presses in a 1 min interval for a range of
stimulation currents (n = 6 animals). Based on these findings, the average currents chosen
for the low, medium and high reinforcer magnitudes were 67 μA ± 8.71, 115 μA ± 11.4, and
186.67 μA ± 8.43, respectively (see methods for details).
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Figure 2. Transient increases in dopamine release follow cue onset during ICSS
A) Top, A time line of the ICSS paradigm used during dopamine measurements. Each trial
began with cue onset (2 s prior to lever extension) and ended with stimulation delivery.
Trials were separated by a random interval of 5 s – 25 s (as indicated by the dashed line).
Center, a color plot from a single trial in a single animal. It displays the transient dopamine
activity observed in response to cue onset and stimulation. Changes in current due to
dopamine oxidation are color-coded and occur at the oxidation potential for dopamine (~0.6
V vs. Ag/AgCl). Bottom, the dopamine concentration extracted from these data using
principal component regression are shown. B) A color plot and corresponding concentration
versus time trace averaged over 70 trials during responding for a high stimulation current in
a single animal.
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Figure 3. Cue-evoked dopamine release in the NAc shell varies as a function of reinforcer
magnitude
A) Representative dopamine concentration traces are shown for the low, medium, and high
reinforcer magnitude conditions. Cue onset is indicated by the first dashed line (gray) and
lever presentation is indicated by the second dashed line (black). B) Average concentrations
across each trial for cue-evoked (upper) and stimulated-evoked (lower) dopamine at
different reinforcer magnitudes. Data points are the average (± SEM) across animals (n = 6).
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Figure 4. Cue-evoked dopamine in the NAc shell significantly influences reward-seeking
behavior and is a function of reinforcer value
A) The slopes of the average cue-evoked (gray line) and stimulated (black line) dopamine
signals as a function of stimulation current were significantly different from one another (p
< 0.001). The slopes were obtained from a linear regression analysis. B) Cue-evoked
dopamine was significantly correlated with the latency to press in an inverse manner (r2 =
0.337,*p < 0.05). Each data point is the average response to the trials with low, medium or
high ICSS currents from each animal.
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Table 1
Reinforcer magnitude significantly affects dopamine release in the NAc shell and the
average latency to lever press

The amplitude of cue-evoked and electrically-stimulated dopamine release varied as a function of reinforcer
magnitude (H>M>L). Increases in reinforcer magnitude also lead to a decrease in the average latency to lever
press (H<M<L)

Reinforcer magnitude Cue-evoked dopamine (nM) Stimulated dopamine (nM) Latency to Lever Press (s)

Low 15.7 ± 0.9 29.4 ± 0.9 2.9 ± 0.91

Medium 30.2 ± 0.8*** 72.9 ± 1.4*** 1.8 ± 0.11***

High 42.1 ± 1.1*** 144 ± 2.2*** 1.4 ± 0.10*

*
p<0.05

***
p<0.001, One-way ANOVA followed by Dunnett's post hoc test.
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