16,000 research outputs found

    K\"all\'en-Lehmann representation of noncommutative quantum electrodynamics

    Full text link
    Noncommutative (NC) quantum field theory is the subject of many analyses on formal and general aspects looking for deviations and, therefore, potential noncommutative spacetime effects. Within of this large class, we may now pay some attention to the quantization of NC field theory on lower dimensions and look closely at the issue of dynamical mass generation to the gauge field. This work encompasses the quantization of the two-dimensional massive quantum electrodynamics and three-dimensional topologically massive quantum electrodynamics. We begin by addressing the problem on a general dimensionality making use of the perturbative Seiberg-Witten map to, thus, construct a general action, to only then specify the problem to two and three dimensions. The quantization takes place through the K\"all\'en-Lehmann spectral representation and Yang-Feldman-K\"all\'en formulation, where we calculate the respective spectral density function to the gauge field. Furthermore, regarding the photon two-point function, we discuss how its infrared behavior is related to the term generated by quantum corrections in two dimensions, and, moreover, in three dimensions, we study the issue of nontrivial {\theta}-dependent corrections to the dynamical mass generation

    On Quantum Special Kaehler Geometry

    Full text link
    We compute the effective black hole potential V of the most general N=2, d=4 (local) special Kaehler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of ``flat'' directions of V at its critical points. Furthermore, we elucidate the role of the sectional curvature at the non-supersymmetric critical points of V, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the non-symmetricity of the considered quantum perturbative special Kaehler geometry.Comment: 1+43 pages; v2: typo corrected in the curvature of Jordan symmetric sequence at page 2

    Cultivares de mandioca de mesa da Amazônia Oriental.

    Get PDF
    bitstream/item/52971/1/PesquisaAnd040001.pd

    The pros and cons of using SDL for creation of distributed services

    Get PDF
    In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation

    Ultrarelativistic boost of spinning black rings

    Full text link
    We study the D=5 Emparan-Reall spinning black ring under an ultrarelativistic boost along an arbitrary direction. We analytically determine the resulting shock pp-wave, in particular for boosts along axes orthogonal and parallel to the plane of rotation. The solution becomes physically more interesting and simpler if one enforces equilibrium between the forces on the ring. We also comment on the ultrarelativistic limit of recently found supersymmetric black rings with two independent angular momenta. Essential distinct features with respect to the boosted Myers-Perry black holes are pointed out.Comment: 15 pages, 2 figures. v2: added multipole expansions at spatial infinity, and a comparison with the boosted Myers-Perry solution in a new appendix. To appear in JHE

    Electromagnetic waves around dilatonic stars and naked singularities

    Full text link
    We study the propagation of classical electromagnetic waves on the simplest four-dimensional spherically symmetric metric with a dilaton background field. Solutions to the relevant equations are obtained perturbatively in a parameter which measures the strength of the dilaton field (hence parameterizes the departure from Schwarzschild geometry). The loss of energy from outgoing modes is estimated as a back-scattering process against the dilaton background, which would affect the luminosity of stars with a dilaton field. The radiation emitted by a freely falling point-like source on such a background is also studied by analytical and numerical methods.Comment: 9 pages, 1 figur

    Structural investigations on ϵ\epsilon-FeGe at high pressure and low temperature

    Full text link
    The structural parameters of ϵ\epsilon-FeGe have been determined at ambient conditions using single crystal refinement. Powder diffraction have been carried out to determine structural properties and compressibility for pressures up to 30 GPa and temperatures as low as 82 K. The discontinuous change in the pressure dependence of the shortest Fe-Ge interatomic distance might be interpreted as a symmetry-conserving transition and seems to be related to a magnetic phase boundary line.Comment: 4 pages, 5 figure

    Effects due to a scalar coupling on the particle-antiparticle production in the Duffin-Kemmer-Petiau theory

    Full text link
    The Duffin-Kemmer-Petiau formalism with vector and scalar potentials is used to point out a few misconceptions diffused in the literature. It is explicitly shown that the scalar coupling makes the DKP formalism not equivalent to the Klein-Gordon formalism or to the Proca formalism, and that the spin-1 sector of the DKP theory looks formally like the spin-0 sector. With proper boundary conditions, scattering of massive bosons in an arbitrary mixed vector-scalar square step potential is explored in a simple way and effects due to the scalar coupling on the particle-antiparticle production and localization of bosons are analyzed in some detail
    corecore