69 research outputs found

    Fast detection of Mycobacterium tuberculosis in culture-positive sputum samples by nitrate reductase activity

    Get PDF
    Microscopy and bacterial culture are the main tools in the diagnosis of tuberculosis. Since the slow growth of Mycobacterium tuberculosis impairs rapid diagnosis strategies, especially in countries where the latter are the only available resources, the ongoing development of new and inexpensive tools based on mycobacterial metabolism optimizing growth detection with preliminary identification is greatly welcome. When compared to the other species from the M. tuberculosis complex, M. tuberculosis is a strong nitrate reducer. Current assay compares the nitrate reductase activity of M. tuberculosis from pulmonary specimens cultivated in nitrate-supplemented media. Fifty-five sputum samples were decontaminated and inoculated in conventional (Middlebrook 7H9, Ogawa Kudoh-OK) and in nitrate-supplemented media (Middlebrook 7H9-N, Ogawa Kudoh-N). An aliquot from the media directly reacted with Griess reagent (7H9-N and OK-N) every five days, or transferred to a nitrate substrate solution (7H9, OK). Nitrate to nitrite reduction was considered positive, revealed by the pink color, indicating bacterial growth. As reference method, the Mycobacteria Growth Indicator Tube (MGIT) was used for sensitivity calculations and statistical analysis. 7H9-N and OK-N assays proved to perform better in detecting M. tuberculosis than conventional assays (7H9 and OK). Indeed, broth nitrate-supplemented medium (7H9-N) was comparable to MGIT to detect M. tuberculosis, except in growth detection time. Results show that 7H9-N may be used as an alternative tool particularly in low-income countries since it is a simple and cheap technique, and does not restrict diagnosis to single-source products

    Novos iniciadores para detecção de Leishmania infantum pela reação em cadeia da polimerase

    Get PDF
    Leishmania infantum causes visceral leishmaniasis (VL) in the New World. The diagnosis of VL is confirmed by parasitological and serological tests, which are not always sensitive or specific. Our aim was to design new primers to perform a Polymerase Chain Reaction (PCR) for detecting L. infantum. Sequences of the minicircle kinetoplast DNA (kDNA) were obtained from GenBank, and the FLC2/RLC2 primers were designed. Samples of DNA from L. infantum, Leishmania amazonensis, Leishmania braziliensis, Leishmania guyanensis, Leishmania naiffi, Leishmania lainsoni, Leishmania panamensis, Leishmania major and Trypanosoma cruzi were used to standardize the PCR. PCR with FLC2/RLC2 primers amplified a fragment of 230 bp and the detection limit was 0.2 fg of L. infantum DNA. Of the parasite species assayed, only L. infantum DNA was amplified. After sequencing, the fragment was aligned to GenBank sequences, and showed (99%) homology with L. infantum. In the analysis of blood samples and lesion biopsy from a dog clinically suspected to have VL, the PCR detected DNA from L. infantum. In biopsy lesions from humans and dogs with cutaneous leishmaniasis, the PCR was negative. The PCR with FLC2/RLC2 primers showed high sensitivity and specificity, and constitutes a promising technique for the diagnosis of VL.Leishmania infantum causa leishmaniose visceral (LV) no Novo Mundo. O diagnóstico de LV é confirmado por testes parasitológicos e sorológicos, os quais nem sempre são sensíveis ou específicos. Nosso objetivo foi desenhar novos iniciadores para realizar uma Reação em Cadeia da Polimerase (PCR) para detecção de L. infantum. Sequências do DNA do minicírculo do cinetoplasto (kDNA) foram obtidos do GenBank, e os iniciadores FLC2/RLC2 foram desenhados. Amostras de DNA de L. infantum, Leishmania amazonensis, Leishmania braziliensis, Leishmania guyanensis, Leishmania naiffi, Leishmania lainsoni, Leishmania panamensis, Leishmania major e Trypanosoma cruzi foram usados para padronizar a PCR. PCR com iniciadores FLC2/RLC2 amplificou um fragmento de 230 pb e detectou 0,2 fg de DNA de L. infantum.Das espécies de parasitos analisadas, somente DNA de L. infantum foi amplificado. Após sequenciamento, o fragmento foi analisado no GenBank, que mostrou homologia com L. infantum. Em análises de amostras de sangue e lesão de cão com suspeita clínica de LV, a PCR detectou DNA de L. infantum. Em amostras de lesão de humanos e cães com leishmaniose cutânea, a PCR foi negativa. A PCR padronizada com os iniciadores FLC2/RLC2 mostrou alta sensibilidade e especificidade, sendo técnica promissora para o diagnóstico de LV

    Critical analysis: use of polymerase chain reaction to diagnose leprosy

    Get PDF
    Leprosy is a neglected tropical disease and an important public health problem, especially in developing countries. It is a chronic infectious disease that is caused by Mycobacterium leprae, which has a predilection for the skin and peripheral nerves. Although it has low sensitivity, slit-skin smear (SSS) remains the conventional auxiliary laboratory technique for the clinical diagnosis of leprosy. Polymerase chain reaction (PCR) is a molecular biology technique that holds promise as a simple and sensitive diagnostic tool. In the present study, the performance of two PCR methods, using different targets, PCR-LP and PCR-P, were compared with SSS with regard to leprosy diagnosis in a reference laboratory. M. leprae DNA was extracted from 106 lymph samples of 40 patients who had clinical suspicion of leprosy. The samples were subjected to both PCR techniques and SSS. Amplification of the human b-globin gene was used as PCR inhibitor control. The specificity of both PCR techniques was 100%, and sensitivity was 0.007 and 0.015 µg/ml for PCR-LP and PCR-P, respectively. No significant difference was found between either the PCR-LP or PCR-P results and SSS results (p >; 0.05). Although PCR is not yet a replacement for SSS in the diagnosis of leprosy, this technique may be used as an efficient auxiliary tool for early detection of the disease, especially in endemic regions. This strategy may also be useful in cases in which SSS results are negative (e.g., in paucibacillary patients) and cases in which skin biopsy cannot be performed.A hanseníase é uma doença tropical negligenciada e ainda um importante problema de saúde pública, especialmente nos países em desenvolvimento. É uma doença infecciosa crônica causada pelo Mycobacterium leprae, que tem predileção pela pele e nervos periféricos. Embora com baixa sensibilidade, o esfregaço de linfa (SSS) continua sendo o método laboratorial convencional auxiliar no diagnóstico clínico da hanseníase. A biologia molecular representada pela Reação em Cadeia da Polimerase (PCR) trouxe a expectativa de ser uma ferramenta diagnóstica simples e sensível. No presente estudo, o desempenho de dois métodos de PCR usando alvos diferentes, PCR-P e PCR-LP, foi comparado com SSS no diagnóstico da hanseníase em um laboratório de referência. DNA de M. leprae foi extraído de 106 amostras de linfa de 40 pacientes que apresentavam suspeita clínica de hanseníase. As amostras foram submetidas tanto a PCR como SSS. A amplificação do gene humano β-globina foi usada como controle de inibição da PCR. A especificidade de ambas as técnicas de PCR foi de 100% e a sensibilidade foi de 0,007 μg/mL e 0,015 μg/mL para a PCR-P e PCR-LP, respectivamente. Não se observou diferença estatística entre os resultados da PCR-LP e PCR-P, quando comparado com SSS (p >; 0,05). Apesar de a PCR ainda não substituir o SSS no diagnóstico da hanseníase, esta técnica pode ser usada como ferramenta auxiliar eficiente para a detecção precoce da doença, especialmente em regiões endêmicas. Esta estratégia pode também ser útil nos casos em que os resultados de SSS forem negativos (ex. em pacientes paucibacilares) e em casos onde a biópsia da pele não pode ser realizada

    Molecular characterization of Mycobacterium tuberculosis and Mycobacterium bovis isolates by Enterobacterial Repetitive Intergenic Consensus-PCR

    Get PDF
    Tuberculosis (TB) is an infectious disease in which the molecular typing methods allow to have important information about the dynamics of transmission and to assist properly in disease control. Although the ERIC-PCR (Enterobacterial repetitive intergenic consensus-PCR) assay is fast and easy to perform, scarce studies have reported its use in epidemiological studies in TB outbreaks. In this study, we aimed to genotype Mycobacterium tuberculosis and M. bovis isolates by ERIC-PCR and compare its discriminatory power with two other classically used methods: 12 loci-MIRU (Mycobacterial Interspersed Repetitive Units) and Spoligotyping. The M. tuberculosis isolates studied were from northwestern and southwestern and M. bovis from northwestern Parana, Brazil. ERIC-PCR rendered banding patterns with great diversity (1 to 12 bands) of molecular sizes, ranging from 100 to 1600 bp. ERIC-PCR showed to be fast, simple and affordable to differentiate isolates. ERIC-PCR would be an important tool in the epidemiology of TB as screening in case of outbreak, which demands rapid intervention. However if any doubt persist, as it may occur with the application of only one genotypic method, other genotyping methods should be applied and carefully interpreted, always with additional epidemiological information

    Is the efflux pump inhibitor Verapamil a potential booster for isoniazid against Mycobacterium tuberculosis?

    Get PDF
    The membrane-based efflux pump systems are recognized to have an important role in pathogenicity and drug resistance in Mycobacterium tuberculosis by the extrusion of toxic substrates and drugs from the inner bacillus. This study aimed to investigate the in vitro interaction of Verapamil (VP), an efflux pump inhibitor, with the classical first-line anti-tuberculosis drug isoniazid (INH) in resistant and susceptible M. tuberculosis clinical isolates. Seven multidrug-resistant (MDR), three INH monoresistant and four susceptible M. tuberculosis clinical isolates were tested for the INH and VP combination by modified Resazurin Microtiter Assay Plate (REMA). Fractional Inhibitory Concentration (FIC) and Modulation Factor (MF) were determined. The INH plus VP combination showed no significant change in the Minimum inhibitory concentration (MIC) values of INH (FIC≥ 0.5; MF=1 or 2).The use of VP in tuberculosis therapy should be managed carefully, considering the resistance caused by specific mutation in katG and inhA genes, in which the use of these EPIs may have no success. The use of EPIs as an adjunctive drug in the anti-tuberculosis therapy should be further investigated on a larger number of M. tuberculosis clinical isolates with different resistant profile

    Activity of antiretroviral drugs in human infections by opportunistic agents

    Get PDF
    Highly active antiretroviral therapy (HAART) is used in patients infected with HIV. This treatment has been shown to significantly decrease opportunist infections such as those caused by viruses, fungi and particularly, protozoa. The use of HAART in HIV-positive persons is associated with immune reconstitution as well as decreased prevalence of oral candidiasis and candidal carriage. Antiretroviral therapy benefits patients who are co-infected by the human immunodeficiency virus (HIV), human herpes virus 8 (HHV-8), Epstein-Barr virus, hepatitis B virus (HBV), parvovirus B19 and cytomegalovirus (CMV). HAART has also led to a significant reduction in the incidence, and the modification of characteristics, of bacteremia by etiological agents such as Staphylococcus aureus, coagulase negative staphylococcus, non-typhoid species of Salmonella, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. HAART can modify the natural history of cryptosporidiosis and microsporidiosis, and restore mucosal immunity, leading to the eradication of Cryptosporidium parvum. A similar restoration of immune response occurs in infections by Toxoplasma gondii. The decline in the incidence of visceral leishmaniasis/HIV co-infection can be observed after the introduction of protease inhibitor therapy. Current findings are highly relevant for clinical medicine and may serve to reduce the number of prescribed drugs thereby improving the quality of life of patients with opportunistic diseases.A terapia HAART (terapia antirretroviral altamente ativa) é usada em pacientes infectados pelo vírus da imunodeficiência humana (HIV) e demonstrou diminuição significativa de infecções oportunistas, tais como as causadas por vírus, fungos, protozoários e bactérias. O uso da HAART está associado com a reconstituição imunológica e diminuição na prevalência de candidíase oral. A terapia antirretroviral beneficia pacientes co-infectados pelo HIV, vírus herpes humano 8 (HHV-8), vírus Epstein-Barr (EBV), vírus da hepatite B (HBV), parvovírus B19 e citomegalovírus (CMV). A HAART também apresentou redução significativa da incidência e modificou as características da bacteremia por agentes etiológicos, tais como Staphylococcus aureus, espécies não-tifóides de Salmonella, Streptococcus pneumoniae, Pseudomonas aeruginosa, Mycobacterium tuberculosis. A HAART é capaz de modificar significativamente a história natural da criptosporidiose e microsporidiose. HAART pode efetivamente restaurar a imunidade da mucosa, levando à erradicação de Cryptosporidium parvum. Semelhante restauração da resposta imune ocorre em infecções por Toxoplasma gondii. O declínio na incidência de co-infecção leishmaniose visceral/HIV pode ser observada após a introdução da terapia com inibidores da protease. Os resultados atuais são altamente relevantes para a medicina clínica e podem proporcionar diminuição no número de prescrições medicamentosas e, consequentemente, melhor qualidade de vida para pacientes com doenças oportunistas

    Prevalence of Streptococcus agalactiae colonization in pregnant women from the 18th Health Region of Paraná State

    Get PDF
    Introduction The aim of this study was to determine the prevalence of GBS colonization in pregnant women in a public health service. Methods A study of 496 pregnant women at 35-37 gestational weeks was conducted from September 2011 to March 2014 in 21 municipalities of the 18th Health Region of Paraná State. Vaginal and anorectal samples of each woman were plated on sheep blood agar, and in HPTH and Todd-Hewitt enrichment broths. Results Of the 496 pregnant women, 141 (28.4%) were positive for GBS based on the combination of the three culture media with vaginal and anorectal samples. The prevalence was 23.7% for vaginal samples and 21.9% for anorectal ones. Among the variables analyzed in this study, only urinary infection was a significant factor (0.026) associated with GBS colonization in women. Conclusions Based on these results, health units should performs universal screening of pregnant women and hospitals should provide adequate prophylaxis, when indicated

    A Nanostructured Lipid System to Improve the Oral Bioavailability of Ruthenium(II) Complexes for the Treatment of Infections Caused by Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) is an infectious, airborne disease caused by the bacterium Mycobacterium tuberculosis that mainly affects the lungs. Fortunately, tuberculosis is a curable disease, and in recent years, death rates for this disease have decreased. However, the existence of antibiotic-resistant strains and the occurrence of co-infections with human immunodeficiency virus (HIV), have led to increased mortality in recent years. Another area of concern is that one-third of the world′s population is currently infected with M. tuberculosis in its latent state, serving as a potential reservoir for active TB. In an effort to address the failure of current TB drugs, greater attention is being given to the importance of bioinorganic chemistry as an ally in new research into the development of anti-TB drugs. Ruthenium (Ru) is a chemical element that can mimic iron (Fe) in the body. In previous studies involving the following heteroleptic Ru complexes, [Ru(pic)(dppb)(bipy)]PF6 (SCAR1), [Ru(pic)(dppb)(Me-bipy)]PF6 (SCAR2), [Ru(pic)(dppb)(phen)]PF6 (SCAR4), cis-[Ru(pic)(dppe)2]PF6 (SCAR5), and [Ru(pic)(dppe)(phen)]PF6 (SCAR7), we observed excellent anti-TB activity, moderate cell-toxicity, and a lack of oral bioavailability in an in vivo model of these complexes. Therefore, the objective of this study was to evaluate the toxicity and oral bioavailability of these complexes by loading them into a nanostructured lipid system. The nanostructured lipid system was generated using different ratios of surfactant (soybean phosphatidylcholine, Eumulgin®, and sodium oleate), aqueous phase (phosphate buffer with a concentration of 1X and pH 7.4), and oil (cholesterol) to generate a system for the incorporation of Ru(II) compounds. The anti-TB activity of the compounds was determined using a microdilution assay with Resazurin (REMA) against strains of M. tuberculosis H37Rv and clinical isolates resistant. Cytotoxicity assay using J774.A1 cells (ATCC TIB-67) and intra-macrophage activity were performed. The oral bioavailability assay was used to analyze blood collected from female BALB/C mice. Plasma collected from the same mice was analyzed via inductively coupled plasma mass spectrometry (ICP-MS) to quantify the number of Ru ions. The complexes loaded into the nanostructured lipid system maintained in vitro activity and toxicity was found to be reduced compared with the compounds that were not loaded. The complexes showed intra-macrophagic activity and were orally bioavailable
    corecore