11,539 research outputs found

    A geometrical non-linear model for cable systems analysis

    Get PDF
    Cable structures are commonly studied with simplified analytical equations. The evaluation of the accuracy of these equations, in terms of equilibrium geometry configuration and stress distribution was performed for standard cables examples. A three-dimensional finite element analysis (hereafter FEA) procedure based on geometry-dependent stiffness coefficients was developed. The FEA follows a classical procedure in finite element programs, which uses an iterative algorithm, in terms of displacements. The theory is based on a total Lagrange formulation using Green-Lagrange strain. Pure Newton-Raphson procedure was employed to solve the non-linear equations. The results show that the rigid character of the catenary’s analytical equation, introduce errors when compared with the FEA

    On Quantum Special Kaehler Geometry

    Full text link
    We compute the effective black hole potential V of the most general N=2, d=4 (local) special Kaehler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of ``flat'' directions of V at its critical points. Furthermore, we elucidate the role of the sectional curvature at the non-supersymmetric critical points of V, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the non-symmetricity of the considered quantum perturbative special Kaehler geometry.Comment: 1+43 pages; v2: typo corrected in the curvature of Jordan symmetric sequence at page 2

    Gravitational Larmor formula in higher dimensions

    Get PDF
    The Larmor formula for scalar and gravitational radiation from a pointlike particle is derived in any even higher-dimensional flat spacetime. General expressions for the field in the wave zone and the energy flux are obtained in closed form. The explicit results in four and six dimensions are used to illustrate the effect of extra dimensions on linear and uniform circular motion. Prospects for detection of bulk gravitational radiation are briefly discussed.Comment: 5 pages, no figure

    Thermodynamics of Plasmaballs and Plasmarings in 3+1 Dimensions

    Full text link
    We study localized plasma configurations in 3+1 dimensional massive field theories obtained by Scherk-Schwarz compactification of 4+1 dimensional CFT to predict the thermodynamic properties of localized blackholes and blackrings in Scherk-Schwarz compactified AdS6AdS_6 using the AdS/CFT correspondence. We present an exact solution to the relativistic Navier-Stokes equation in the thin ring limit of the fluid configuration. We also perform a thorough numerical analysis to obtain the thermodynamic properties of the most general solution. Finally we compare our results with the recent proposal for the phase diagram of blackholes in six flat dimensions and find some similarities but other differences.Comment: 18 pages, 11 figures, latex; v2: Typos corrected and new references adde

    One-Dimensional Approximation of Viscous Flows

    Full text link
    Attention has been paid to the similarity and duality between the Gregory-Laflamme instability of black strings and the Rayleigh-Plateau instability of extended fluids. In this paper, we derive a set of simple (1+1)-dimensional equations from the Navier-Stokes equations describing thin flows of (non-relativistic and incompressible) viscous fluids. This formulation, a generalization of the theory of drop formation by Eggers and his collaborators, would make it possible to examine the final fate of Rayleigh-Plateau instability, its dimensional dependence, and possible self-similar behaviors before and after the drop formation, in the context of fluid/gravity correspondence.Comment: 17 pages, 3 figures; v2: refs & comments adde

    Retail clients latent segments

    Get PDF
    Latent Segments Models (LSM) are commonly used as an approach for market segmentation. When using LSM, several criteria are available to determine the number of segments. However, it is not established which criteria are more adequate when dealing with a specific application. Since most market segmentation problems involve the simultaneous use of categorical and continuous base variables, it is particularly useful to select the best criteria when dealing with LSM with mixed type base variables. We first present an empirical test, which provides the ranking of several information criteria for model selection based on ten mixed data sets. As a result, the ICL-BIC, BIC, CAIC and L criteria are selected as the best performing criteria in the estimation of mixed mixture models. We then present an application concerning a retail chain clients' segmentation. The best information criteria yield two segments: Preferential Clients and Occasional Clients.info:eu-repo/semantics/acceptedVersio

    Relaxation in Conformal Field Theory, Hawking-Page Transition, and Quasinormal/Normal Modes

    Get PDF
    We study the process of relaxation back to thermal equilibrium in (1+1)(1+1)-dimensional conformal field theory at finite temperature. When the size of the system is much larger than the inverse temperature, perturbations decay exponentially with time. On the other hand, when the inverse temperature is large, the relaxation is oscillatory with characteristic period set by the size of the system. We then analyse the intermediate regime in two specific models, namely free fermions, and a strongly coupled large k\tt k conformal field theory which is dual to string theory on (2+1)(2+1)-dimensional anti-de Sitter spacetime. In the latter case, there is a sharp transition between the two regimes in the k={\tt k}=\infty limit, which is a manifestation of the gravitational Hawking-Page phase transition. In particular, we establish a direct connection between quasinormal and normal modes of the gravity system, and the decaying and oscillating behaviour of the conformal field theory.Comment: 10 pages, latex, no figure

    Quasi-normal modes of toroidal, cylindrical and planar black holes in anti-de Sitter spacetimes: scalar, electromagnetic and gravitational perturbations

    Full text link
    We study the quasi-normal modes (QNM) of scalar, electromagnetic and gravitational perturbations of black holes in general relativity whose horizons have toroidal, cylindrical or planar topology in an asymptotically anti-de Sitter (AdS) spacetime. The associated quasinormal frequencies describe the decay in time of the corresponding test field in the vicinities of the black hole. In terms of the AdS/CFT conjecture, the inverse of the frequency is a measure of the dynamical timescale of approach to thermal equilibrium of the corresponding conformal field theory.Comment: Latex, 16 pages. Minor change
    corecore