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Abstract. Cable structures are commonly studied with simplified analytical equations. The 
evaluation of the accuracy of these equations, in terms of equilibrium geometry configuration 
and stress distribution was performed for standard cables examples. A three-dimensional 
finite element analysis (hereafter FEA) procedure based on geometry-dependent stiffness 
coefficients was developed. The FEA follows a classical procedure in finite element 
programs, which uses an iterative algorithm, in terms of displacements. The theory is based 
on a total Lagrange formulation using Green-Lagrange strain. Pure Newton-Raphson 
procedure was employed to solve the non-linear equations. The results show that the rigid 
character of the catenary’s analytical equation, introduce errors when compared with the FEA. 

1 INTRODUCTION 

Cables are widely used in suspended bridges, transmission lines or membrane panels [5]. 
These structural elements are used to transmit tensile forces along a specified curve. Cables 
can be divided in three categories, in accordance with the acting force field: 
a) Concentrated loads acting on the cable, Fig. 1-a). 
b) Uniformly distributed load acting along a horizontal line, Fig. 1-b). 
c) Uniformly distributed load acting along the cable (corresponding to its self-weight, per 

example), Fig. 1-c). 
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For the design of this type of structural elements two approaches are commonly used. The 
first one corresponds to the use of analytical equations, based on force equilibrium conditions. 
The second approach consists in the use on numerical finite element models, based on the 
field displacement of the nodes. 
The main issue of this study was to compare results of a non-linear FEA and the analytical 
equations. In fact, usually when the major action is the self-weight of the cable, catenary’s 
equations are used. The first and second categories of cables were not analyzed in this study. 
 
 

 
Fig. 1- Cable structures. 

2 ANALYTICAL EQUATIONS 
As already stated, the determination of the axial force field and geometry configuration of 

cable structures are usually performed using analytical equations [5]. Catenary’s equation is 
used when load is its self-weight. In the following, the analytical equations of the catenary are 
introduced (see Fig. 2). 
 
 
 

 
Fig. 2- Catenary’s equilibrium configuration. 

 
By the equilibrium conditions, the following equations can be found in [5]: 

c
xsenhcs  =                                                                                                                               (1) 
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0  horizontal axial for
T  axial force for a given y value, 
l  span length. 
 
For a given value of s and fro
distribution can be calculated.
 
3 FEA FORMULATION 

3.1 Finite element mesh discretization 
In order to analyze an  compare the results given by the analytical equations, a series of 

on-linear FEA were performed.  The cable structure adopted in this study is conceivn
continuous series of discrete elements c

n 1+n  nodes, as shown in Fig. 3 [4, 8, 9, 11]. 
 

 
Fig. 3- Cable discretization (nodes and elements). 
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3.2 Basic element description 
The basic element used to describe a cable structure acted by nodal forces submit to large 

displacements is represented in Fig. 4. The element has two extremity nodes and three 
independent orthogonal displacements at each node [1, 2, 8, 9, 11]. 
 

 
4- Basic element. Fig. 

denotes the initial e the initial configuration. The initial 
 

Length element length, which defin0

length is calculated with the nodal coordinates 

( ) ( ) ( )2
01

2
01

2
010 zzyyxxl −+−+−=                                                                                (4) 

where 111000  and ,,,, zyxzyx  are the nodal coordinates. 
}6

l  

The nodal displacements associated with the element { 321 ,,,, dddde =d , represented in 
ig. 4, define the displacement vector per element, and its components are the three 

independent displacements in each node. The displacement vector of 
inition of the deformed cable and the calculation of the 

F
the structure, with the 

( ) ( ) (

initial configuration allows the def
length of each element after deformation. 

he length l  denotes the length of the element in a deformed configuration, T
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Expressions (6), defines the direction of each element in a deformed configuration, 
 

ldxdx x=
− l

l
dydy −−+

ll

l
l

l
dzdz z=

−−+
= 6031

3α  

where zyx lll   and   ,  define the projections of the length l on the three orthogonal axes. 

cos

−+
= 4011

1cosα y== 5021
2cosα ,                                         (6) 
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3.3 Equilibrium conditions  
Eq. (7) establishes the equilibrium conditions along the three orthogonal directions at each 

node of the cabl
calculated. Since the occurrence of large displacements was considered, the geometry is non-

t. Thus, stiffness coefficient and internal forces become geometry dependent, and are 
fun io

K ∆                                                                                            (7) 

where 
trix obtained assembling the stiffness contribution of all the 

elements, 

r tive scheme. When the convergence is reached, the 
 and the nodal forces are equilibrated. 

The

3.3.1 C

e structure. The incremental displacement vector is the variable to be 

 

constan
ct n of a deformed configuration. 

K  

int ffd −= ext ,                                               

tangential stiffness ma

d  ∆  incremental displacement vector, 
extf  external forces vector (constant), 

intf  internal forces vector. 
 
The p oblem is solved, in an itera
deformed configuration is calculated,

 expressions of the tangential stiffness matrix and internal force vector can be found in 
Varum and Cardoso [8, 9]. 

onstitutive law and strain 

εσ E=

The constitutive law assumed in the implemented model is linear elastic (Hooke’s law), 
expressed by the following expression [3, 7]. 

                                                                                                                                     (8) 

Since the pro
the theory [10], the stiffness coefficients and internal forces were calculated using Green-

blem involves large displacements, a total Lagrange formulation is employed in 

Lagrange strain definition [1, 6, 11]. 
22

2
0

l
=ε .                                

0

4 ITERATIVE PROCEDURE      

4.1 Newton-Raphson method 

2
1 ll −

                                                                                           (9) 

n iterative scheme [3, 7]. To start with the computation, initial stiffness and internal 
rces are required. Thus initial values are needed for the displacement vector, which is 

accomplished definin
Assuming static conditions and linear elasticity, the following equation yields for all the 
nodes. 

The iterative procedure implemented to solve Eq. (10) is based on the Pure Newton-
Raphso
fo

g an initial geometry and a deformed geometry. 
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  ffdK −=∆                                                                iextii int,, i

d the incremental displacement vector d∆  is computed. A new 

                                              (10) 

Eq. (10) is solved an
displacement vector is obtained with the following equation 

iii ddd  1 ∆+=+                                                                                                                       (11) 

This new displacement vector together with the initial constant geometry vector, defines the 
m

thod [2, 3, 7, 11] the better is the estimation of the 
disp

omputations are started given an initial configuration, an initial 
ector increment. The initial 

con
be used
The

ant radius arc defines the 
itia . 

c with a slightly larger radius. 
re computed. 

4.

defor ed configuration used in the next step.   
As usual, in Pure Newton-Raphson me

lacement vector, the faster will be the convergence to the final solution. 

4.2 Computational implementation 
As already mentioned, the computational implementation of the numerical tool described 

before follows a classical pattern in finite element programs and use an iterative description of 
the finite element method. C
strain vector and a set of parameters, in order to compute a strain v

figuration vector together with the new strain vector defines a deformed configuration to 
 in the next iteration. 

 computation procedure is summarised in the following steps: 
1. An initial cable’s configuration is imposed, namely a const

nodes position and therefore in l length’s cable

d∆

2. An initial strain vector is defined, considering an ar
3. Initial tangential stiffness and internal forces a

 Eq. (7) is evaluated and vector
. The new strain vector is com

6. Step 2 is repeated until converge is achieved. 

 is computed. 
5 puted using Eq. (11). 

nning between two rigid end supports that dist 
00 m along an horizontal line, the cable initial geometry is a constant radius arc, Fig 5. A 

longitudinal elastic modulus of E=200 GPa, was considered. In both examples, the structures 
were discretized in 20 elements and 21 nodes. 
 

5 NUMERICAL EXAMPLES 
The numerical examples selected for this study were established in order to compare the 

results of a geometric non-linear FEA and the analytical equation. 
In all the analyses, it was adopted a cable spa
2
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Fig. 5- Cable geometry adopted in the numerical examples. 

5.1 Catenary’s equation versus FEA 
In the set of numerical analyses, the cable in the conditions described in Fig. 5, is 

subjected to the load corresponding to the self-weight of w= 0.1 kN/m. The area of the cable 
is constant and equal to = 3.14 cm2. 
Figs. 6, 7, 8 and 9 show the different cable configurations and stress distributions along the 
cable, obtained in the FEA and with catenary’s equation, for four different length’s cable. 
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Fig. 7- Cable stress distribution and deformed 
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Fig. 6- Cable stress distribution and deformed 
configuration,
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Fig. 9- Cable stress distribution and deformed 

configuration,
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From Figs. 6, 7, 8 and 9, it can be observed that the smaller is the initial length of the cable, 
higher is the stress level. The differences in the deformed configuration and stress level obtain 
by FEA and Catenary’s equation also depends on the cable length or stress level. Figs. 10, 11 
and 12 illustrate the differences obtained in maximum stress, minimum stress and maximum y 
coordinate, using the FEA and Catenary’s equation. 
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Fig. 10- Maximum cable stress in the support. 
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Fig. 11- Minimum cable stress at the vertice. 
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sponsible for a subsequent elastic 
deformation. Results from the FEA and analytical expressions are approximately equal, when 

 
Fig. 12- Maximum y coordinate at mid-span. 

6 CONCLUDING REMARKS 
In this research, the theoretical formulation, finite element implementation and numerical 

validation of cable structure are presented to compare FEA and analytical equations results. 
The results obtained from the analyses, shows that the solution of a non-linear finite element 
program are quite different from those given by the analytical expressions. 
The analytical expressions are based on a rigid deformed configuration, being the stress 
distribution and ca
When comparing the FEA results with catenary´s equation, it was concluded that the length of 
the cable controls the stress level. The stress level is re
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the maximum stress in the cable is less than 50 MPa, being the error less than 1%. For 

f 
specially for medium/high stress levels. 

The
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