5,857 research outputs found

    Strategy Options for Disaster Risk Reduction Through Institutional Improvements and Enhanced Financial Sustainability: Recommendations

    Get PDF
    This presentation was commissioned by the Natural Disaster Network of the Regional Policy Dialogue for the V Hemispheric Meeting celebrated on June 13th and 14th, 2005.Disasters, Management Network GestiĂłn de la Red

    Anomalies of the infrared-active phonons in underdoped YBCO as an evidence for the intra-bilayer Josephson effect

    Full text link
    The spectra of the far-infrared c-axis conductivity of underdoped YBCO crystals exhibit dramatic changes of some of the phonon peaks when going from the normal to the superconducting state. We show that the most striking of these anomalies can be naturally explained by changes of the local fields acting on the ions arising from the onset of inter- and intra-bilayer Josephson effects.Comment: Revtex, epsf, 6 pages, 3 figures encapsulated in tex

    Fourier multipliers for Triebel-Lizorkin spaces on compact Lie groups

    Get PDF
    We investigate the boundedness of Fourier multipliers on a compact Lie group when acting on Triebel-Lizorkin spaces. Criteria are given in terms of the H\"ormander-Mihlin-Marcinkiewicz condition. In our analysis, we use the difference structure of the unitary dual of a compact Lie group. Our results cover the sharp H\"ormander-Mihlin theorem on Lebesgue spaces and also other historical results on the subject

    Oscillating singular integral operators on compact Lie groups revisited

    Get PDF
    Fefferman (Acta Math 24:9–36, 1970, Theorem 2′) has proved the weak (1,1) boundedness for a class of oscillating singular integrals that includes the oscillating spectral multipliers of the Euclidean Laplacian Δ , namely, operators of the form Tθ(-Δ):=(1-Δ)-nθ4ei(1-Δ)θ2,0≤θ<1.The aim of this work is to extend Fefferman’s result to oscillating singular integrals on any arbitrary compact Lie group. We also consider applications to oscillating spectral multipliers of the Laplace–Beltrami operator. The proof of our main theorem illustrates the delicate relationship between the condition on the kernel of the operator, its Fourier transform (defined in terms of the representation theory of the group) and the microlocal/geometric properties of the group

    Anemia hemolĂ­tica inmunomediada : caso clĂ­nico

    Get PDF
    En el presente artĂ­culo se describe un caso clĂ­nico de anemia hemolĂ­tica inmunomediada, su diagnĂłstico, tratamiento y evoluciĂłn.In this report one cas of inmunomediated haemolytic is described and the diagnostic, therapy and evolution

    Electron-phonon renormalization of the absorption edge of the cuprous halides

    Full text link
    Compared to most tetrahedral semiconductors, the temperature dependence of the absorption edges of the cuprous halides (CuCl, CuBr, CuI) is very small. CuCl and CuBr show a small increase of the gap E0E_0 with increasing temperature, with a change in the slope of E0E_0 vs. TT at around 150 K: above this temperature, the variation of E0E_0 with TT becomes even smaller. This unusual behavior has been clarified for CuCl by measurements of the low temperature gap vs. the isotopic masses of both constituents, yielding an anomalous negative shift with increasing copper mass. Here we report the isotope effects of Cu and Br on the gap of CuBr, and that of Cu on the gap of CuI. The measured isotope effects allow us to understand the corresponding temperature dependences, which we also report, to our knowledge for the first time, in the case of CuI. These results enable us to develop a more quantitative understanding of the phenomena mentioned for the three halides, and to interpret other anomalies reported for the temperature dependence of the absorption gap in copper and silver chalcogenides; similarities to the behavior observed for the copper chalcopyrites are also pointed out.Comment: 14 pages, 5 figures, submitted to Phys. Rev.

    Electron--Electron Scattering in Quantum Wires and it's Possible Suppression due to Spin Effects

    Full text link
    A microscopic picture of electron-electron pair scattering in single mode quantum wires is introduced which includes electron spin. A new source of `excess' noise for hot carriers is presented. We show that zero magnetic field `spin' splitting in quantum wires can lead to a dramatic `spin'-subband dependence of electron--electron scattering, including the possibility of strong suppression. As a consequence extremely long electron coherence lengths and new spin-related phenomena are predicted. Since electron bands in III-V semiconductor quantum wires are in general spin-split in zero applied magnetic field, these new transport effects are of general importance.Comment: 11 pages, LaTeX and APS-RevteX 2, Rep.No. GF66,Figures from author, Physical Review Letters, scheduled for 7 June 199

    Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry

    Get PDF
    Modulated electroreflectance spectroscopy ΔR/R\Delta R/R of semiconductor self-assembled quantum dots is investigated. The structure is modeled as dots with lens shape geometry and circular cross section. A microscopic description of the electroreflectance spectrum and optical response in terms of an external electric field (F{\bf F}) and lens geometry have been considered. The field and lens symmetry dependence of all experimental parameters involved in the ΔR/R\Delta R/R spectrum have been considered. Using the effective mass formalism the energies and the electronic states as a function of F{\bf F} and dot parameters are calculated. Also, in the framework of the strongly confined regime general expressions for the excitonic binding energies are reported. Optical selection rules are derived in the cases of the light wave vector perpendicular and parallel to % {\bf F}. Detailed calculation of the Seraphin coefficients and electroreflectance spectrum are performed for the InAs and CdSe nanostructures. Calculations show good agreement with measurements recently performed on CdSe/ZnSe when statistical distribution on size is considered, explaining the main observed characteristic in the electroreflectance spectra

    Electronic, vibrational, and thermodynamic properties of ZnS (zincblende and rocksalt structure)

    Full text link
    We have measured the specific heat of zincblende ZnS for several isotopic compositions and over a broad temperature range (3 to 1100 K). We have compared these results with calculations based on ab initio electronic band structures, performed using both LDA and GGA exchange- correlation functionals. We have compared the lattice dynamics obtained in this manner with experimental data and have calculated the one-phonon and two-phonon densities of states. We have also calculated mode Grueneisen parameters at a number of high symmetry points of the Brillouin zone. The electronic part of our calculations has been used to investigate the effect of the 3d core electrons of zinc on the spin-orbit splitting of the top valence bands. The effect of these core electrons on the band structure of the rock salt modification of ZnS is also discussed.Comment: 33pages, 16 Figures, submitted to Phys. Rev.

    Path-integral molecular dynamics simulation of 3C-SiC

    Full text link
    Molecular dynamics simulations of 3C-SiC have been performed as a function of pressure and temperature. These simulations treat both electrons and atomic nuclei by quantum mechanical methods. While the electronic structure of the solid is described by an efficient tight-binding Hamiltonian, the nuclei dynamics is treated by the path integral formulation of statistical mechanics. To assess the relevance of nuclear quantum effects, the results of quantum simulations are compared to others where either the Si nuclei, the C nuclei or both atomic nuclei are treated as classical particles. We find that the experimental thermal expansion of 3C-SiC is realistically reproduced by our simulations. The calculated bulk modulus of 3C-SiC and its pressure derivative at room temperature show also good agreement with the available experimental data. The effect of the electron-phonon interaction on the direct electronic gap of 3C-SiC has been calculated as a function of temperature and related to results obtained for bulk diamond and Si. Comparison to available experimental data shows satisfactory agreement, although we observe that the employed tight-binding model tends to overestimate the magnitude of the electron-phonon interaction. The effect of treating the atomic nuclei as classical particles on the direct gap of 3C-SiC has been assessed. We find that non-linear quantum effects related to the atomic masses are particularly relevant at temperatures below 250 K.Comment: 14 pages, 15 figure
    • …
    corecore