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Abstract
Fefferman (Acta Math 24:9–36, 1970, Theorem 2′) has proved the weak (1,1) boundedness
for a class of oscillating singular integrals that includes the oscillating spectral multipliers of
the Euclidean Laplacian �, namely, operators of the form

Tθ (−�) := (1 − �)−
nθ
4 ei(1−�)

θ
2
, 0 ≤ θ < 1. (0.2)

The aim of this work is to extend Fefferman’s result to oscillating singular integrals on any
arbitrary compact Lie group. We also consider applications to oscillating spectral multipliers
of the Laplace–Beltrami operator. The proof of our main theorem illustrates the delicate
relationship between the condition on the kernel of the operator, its Fourier transform (defined
in terms of the representation theory of the group) and the microlocal/geometric properties
of the group.

Keywords Calderón–Zygmund operator · Weak(1, 1) inequality · Oscillating singular
integrals
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1 Introduction

1.1 Outline

This work deals with the weak (1,1) boundedness of oscillating singular integrals on com-
pact Lie groups by extending to the non-commutative setting the paradigm of the oscillating
singular integrals introduced by Fefferman and Stein in [24, 25], which among other things,
generalises some classical conditions introduced by Calderón and Zygmund [6] andHörman-
der [35]. One of the novelties of this work is that we make use of the geometric properties of
the group, of its microlocal analysis, and of its representation theory.

On compact Lie groups, oscillating singular integrals arose as generalisations of the oscil-
lating spectral multipliers, which are linear operators defined by the spectral calculus via

Tθ (LG) := (1 + LG)−
nθ
4 ei(1+LG )

θ
2
, 0 ≤ θ < 1, (1.1)

where LG := −(X2
1 + · · · X2

n) is the positive Laplace–Beltrami operator on a compact Lie
group G.

The problem of finding boundedness criteria for Fourier multipliers (left-convolution
operators) has been widely investigated for a long time. On a compact Lie group G, the
problem has been considered for central operators by Weiss [47], Coifman and Weiss [18],
Cowling and Sikora [21] in the case of G = SU(2), and Chen and Fan [15]. However,
only symbol criteria for general Fourier multipliers (and for pseudo-differential operators)
on compact Lie groups, making use of the difference structure of the unitary dual ̂G of G,

were firstly proved by the second author and Wirth in [39], and further generalisations were
established in [8, 10, 11, 22] and in the works [9, 12, 26, 36] for the setting of graded Lie
groups. We refer the reader to [1, 10, 16] and [38] for an extensive list of references on the
subject as well as for a historical perspective, in particular in the setting of central operators.
In particular, the work [3] introduces an interesting family of multipliers covering e.g. the
Hörmander–Mihlin condition.

Before presenting the contributions of this paper, let us review the classical result due
to Charles Fefferman which is of central interest for this work, see [24, Page 23]. In the
Euclidean setting, a convolution operator T : f �→ f ∗ K , f ∈ C∞

0 (Rn), with K being a
distribution of compact support and locally integrable outside the origin, and satisfying the
conditions

|̂K (ξ)| = O
(

(1 + |ξ |)− nθ
2

)

, 0 ≤ θ < 1, (1.2)
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and

[K ]H∞,θ := sup
0<R≤1

∥

∥

∥

∥

∥

∥

∥

∫

|x |≥2R1−θ

|K (x − y) − K (x)|dx

∥

∥

∥

∥

∥

∥

∥

L∞(B(0,R), dy)

< ∞, (1.3)

is called of oscillating type. Here, ̂K := FRn K denotes the Fourier transform of the distri-
bution K . The L p-properties for convolution operators of this form were firstly studied by
Hardy [32], Hirschman [34] andWainger [46], in the particular scenario of Fouriermultipliers
with symbols of the form

̂K (ξ) = (1 + |ξ |2)− nθ
4 ei(1+|ξ |2) θ

2
, 0 < θ < 1.

The corresponding operators are oscillating multipliers of the positive Euclidean Laplacian
−� = LRn , namely, operators of the form

Tθ (−�) := (1 − �)−
nθ
4 ei(1−�)

θ
2
, 0 ≤ θ < 1. (1.4)

One of the fundamental contributions to the subject, came with the work [24] by Charles
Fefferman where he established the weak (1,1) boundedness of a class of oscillating singular
integrals that includes the oscillating spectral multipliers of the Laplacian (1.4). It is also
important to mention that Fefferman and Stein, when extending the theory of Hardy spaces
to Euclidean spaces of several variables, observed that the theory of oscillating singular
integrals in [24] also begets bounded operators from the Hardy space H1 into L1, see [25]
for details.

We also observe that although it does not appear in the hypotheses of Theorem 2′ of [24],
Fefferman has assumed in the proof of such a statement (see [24, Page 23]) that the support
of K is small. For instance, his assumption says that diam(supp(K )) < 1. This assumption
in the Euclidean setting is not restrictive because one can use the natural dilation structure
of R

n, and the argument in [24, Page 23] to reduce the analysis of oscillating convolution
kernels with compact support of arbitrary size to distributions with small support.

1.2 Fefferman’s approach

Next, we review the fascinating technique developed by Fefferman in his Acta’s paper [24]
for the proof of the aforementioned weak (1,1) estimate. As it was pointed out by Stein in
[17, Page 1257], such a technique became a subject of much wider interest, as it was adapted
to various other problems e.g. by S. Chanillo, M. Christ, Rubio de Francia, Seeger et al. [42],
etc.

For this, let us fix a convolution operator T with kernel K satisfying (1.2) and (1.3) and
assume that its support is small, for instance, assume that

diam(supp(K )) < 1. (1.5)

To beginwith he decomposed an arbitrary function f ∈ L1(Rn), for a fixed α > 0, according
to the Calderón–Zygmund decomposition theorem, in the standard way, that is f = g + b,
b := ∑

j b j ,where the L2-norm of g is bounded from above by α, and the b j ’s are supported
on disjoint dyadic cubes I j ’s in such a way that the following two properties are satisfied

1

|I j |
∫

I j

|b j (x)|dx ∼ α,

∫

I j

b j (x)dx = 0. (1.6)
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When estimating |{x ∈ R
n : |T f (x)| > α}|, he started with the standard inequality

|{x ∈ R
n : |T f (x)| > α}| ≤ |{x ∈ R

n : |Tb(x)| > α/2}| + |{x ∈ R
n : |Tg(x)| > α/2}|.

Then, he observed that T (g) can be estimated from above with the L1-norm of f using the
L2-theory. As for the estimate of T (b j ), the main idea in Fefferman’s argument was the
consideration of a family of measurable sets I ∗

j such that,

center[I j ] = center[I ∗
j ], diameter[I ∗

j ] ∼ diameter[I j ]1−θ . (1.7)

By making a suitable geometric reduction of the support of K , he proved that only cubes I j
with diam[I j ] < 1 were significant when estimating T (b j ). Moreover, the contribution of
T (b j ) outside the set I ∗

j can be handled in view of the kernel condition (1.3).
About the critical contribution of T (b j ) in the set I ∗

j \I j , he introduced a nice replacement

b̃ j of b j , and another one b̃ = ∑

j b̃ j of b, and he was able to prove that

‖T (b̃)‖L2 � ‖(−�)−
nθ
4 b̃‖L2 � α‖ f ‖L1 , (1.8)

by combining the L2-theory, a suitable decomposition of the function (−�)− nθ
4 b̃ = F1+F2,

and the Sobolev inequality. Putting all these estimates together he proved the weak (1,1) type
of T .

1.3 Compact Lie groups setting

It is natural to investigate whether these results for oscillating singular integrals on R
n can

be extended to more general manifolds. In particular, in view of the behaviour of the Fourier
transform of the kernel (1.2) one can analyse the problem in the setting of compact Lie
groups where the group Fourier transform is defined in terms of the representation theory of
the group.

On a compact Lie group G, an oscillating singular integral is a left-invariant operator
T : C∞(G) → D ′(G) with right convolution kernel K satisfying the estimate

[K ]H∞,θ (G) := sup
0<R≤1

‖
∫

|x |≥2R1−θ

|K (y−1x) − K (x)|dx‖L∞(B(0,R), dy) < ∞, (1.9)

for some 0 ≤ θ < 1. We have denoted by |x | = d(x, e) the geodesic distance from x ∈ G
to the neutral element e ∈ G.

In order to study the boundedness of oscillating singular integrals in the non-commutative
setting, one could adopt the argument of Fefferman and to study its extension to compact
Lie groups. Nevertheless, when extending such a construction we found some obstructions
related with the structure of the group G. More precisely, in Fefferman’s argument, the b̃′

j s
are defined by the convolution b j ∗ φ j , where roughly speaking, any φ j is given by

φ j (y) := diam[I j ]−n/(1−θ)φ(diam[I j ]−1/(1−θ) · y), ∫φ = 1, supp[φ] ⊂ {x : |x | ≤ 1}.
By taking into account the geometry of the group, we observe that there is not a global action
R

+ × G → G of R
+ into G, that allows us to define the elements r · y ∈ G, for r > 0

and y ∈ G, in a compatible way with Fefferman’s argument. Of particular interest are the
dilations factors

r = diam[I j ]−1/(1−θ) > 1.
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Indeed, only on small neighborhoods ν of 0 ∈ g, and ν′ of the neutral element e ∈ G, the
exponential mapping exp : ν → ν′ is a diffeomorphism, and a local family of dilations
Dr : ν → ν, with 0 < r ≤ 1, denoted by y ∈ ν �→ Dr (y) = r · y, can be defined via
r · y = exp(r exp−1(y)). One can translate these dilations to small neighborhoods of any
point of the group by using the multiplication operation on G, but, still, the case of dilations
by factors r > 1 cannot be covered with this local construction.

However, inspired by the approach developed by Coifman andWeiss [20] and by Coifman
and De Guzmán [19], we observe that for the scenario of compact Lie groups by taking the
family of functions

φ j (y) = 1

|B(e, R j )|1B(e,R j ), R j ∼ diam[I j ]1/(1−θ), (1.10)

will provide the necessary properties for extending Fefferman’s argument.
Since our analysis is local we will assume the following hypothesis:

(H): Assume that K is a distribution of compact support and that its diameter is small enough,
for instance, we assume that supp(K ) is contained in a neighborhood ν of the identity
e ∈ G, in such a way that exp : ν′ = exp−1(ν) → ν is a diffeomorphism, and that
diam(supp(K )) < c, where 0 < c ≤ 1.

The main theorem of this work is the following. Here ̂G denotes the unitary dual of G
and the elliptic weight 〈ξ 〉, [ξ ] ∈ ̂G, is defined in terms of the spectrum of the Laplacian on
G, see Sect. 2 for details.

Theorem 1.1 Let G be a compact Lie group of dimension n, and let T : C∞(G) → D ′(G)

be a left-invariant operator with right-convolution kernel K ∈ L1
loc(G\{e}) satisfying the

small support condition (H). Let us consider that for 0 ≤ θ < 1, K satisfies the group
Fourier transform condition

∃C > 0, ∀[ξ ] ∈ ̂G, ‖̂K (ξ)‖op ≤ C〈ξ 〉− nθ
2 , (1.11)

and the oscillating Hörmander condition

[K ]H∞,θ (G) := sup
0<R≤1

sup
|y|≤R

∫

|x |≥2R1−θ

|K (y−1x) − K (x)|dx < ∞. (1.12)

Then T admits an extension of weak (1, 1) type.

Remark 1.2 It was proved in [13] that under the hypothesis in Theorem 1.1, T is bounded
from the Hardy space H1(G) into L1(G). So, in the case of compact Lie groups our main
Theorem 1.1 together with the results in [13] provide a complete perspective on the subject,
related with the Hörmander condition in (1.12) for all 0 ≤ θ < 1. We observe that the
case θ = 1 is outside of the analysis in our approach. It is related to the wave operator for
the Laplace–Beltrami operator and in view of the weak (1,1) estimate for Fourier integral
operators by Tao [44], it is expected that the right decay condition in (1.11) for θ = 1 could
be the one with the order −(n − 1)/2 (instead of −n/2).

Remark 1.3 The condition that the support of the distribution K is contained in a neighbor-
hood ν of the identity e ∈ G, in such a way that that exp : ν′ = exp−1(ν) → ν = exp(ν) is
a diffeomorphism guarantees a local analysis.
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Remark 1.4 We also observe that the relevant contribution of Theorem 1.1 is the case where
0 < θ < 1. Indeed, for θ = 0, the Fourier transformcondition in (1.11) can be replaced for the
L2-boundedness of the operator T , and the condition in (1.12) is reduced to the smoothness
Hörmander conditionwhich can be analysed in the setting of the Calderón–Zygmund theory
on spaces of homogeneous type in the sense of Coifman and Weiss [20].

Remark 1.5 One of the differences between the approach due to Fefferman in [24] and our
proof of Theorem 1.1 lies in our application of the L2-boundedness of the operator (−LG)z

when Re(z) < 0, in view of the Stein identity (see [43, Page 58])

(−LG)z = (−LG + ProjKer(−LG )

)z − ProjKer(−LG ).

See e.g. Remark 2.4 of [40]. Indeed, we have that (−LG)z is a pseudo-differential operator on
G of order Re(z) < 0. Note that, this argument does not apply in the case of R

n because the
spectrum of the Euclidean Laplacian is continuous and the negative powers of −�Rn are not
pseudo-differential operators, while the powers of 1−�Rn are pseudo-differential operators
with symbols in the Kohn–Nirenberg classes, see e.g. Taylor [45]. The boundedness of the
operator (−LG)z on L2 allows us to apply the microlocal analysis of G.

Remark 1.6 In view of the Hopf-Rinow theorem the exponential mapping on G viewed as
a Riemannian manifold agrees with the exponential mapping on G, considered as a closed
sub-group of (the linear group of unitary matrices) U(N ) for N large enough. In particular
on small neighborhoods ν of 0 ∈ g, and ν′ of the neutral element e ∈ G, the exponential
mapping exp : ν → ν′ is a diffeomorphism. This geometric property of the group will be
involved in the proof of our main Theorem 1.1.

Remark 1.7 Clearly G being a compact topological space is a homogeneous space in the
sense of Coifman and Weiss [20]. The geometric measure theory of the group will be used
due to the existence of Calderón–Zygmund type decompositions for any f ∈ L1(G), see
[20, Pages 73–74].

Remark 1.8 We observe that using the theory of Coifman and De Guzmán [19], the second
author and Wirth in [39] have proved Hörmander–Mihlin criteria for Fourier multipliers on
compact Lie groups. In that setting, as expected, it was a non-trivial fact that the operators
satisfy Calderón–Zygmund type conditions (corresponding to the case θ = 0 in Theorem
1.1).

Remark 1.9 For limited-range versions of the Calderón–Zygmund theorem we refer the
reader to Baernstein and Sawyer [2], Carbery [7], Seeger [41], and Grafakos, Honzík, Ryabo-
gin [31]. We observe that the case in the Euclidean setting, the case θ = 0 includes Fourier
multipliers satisfying Hörmander–Mihlin conditions. Improvements for the Hörmander con-
dition and conditions of Hörmander–Mihlin type in the Euclidean framework can be found
in Grafakos [30]. We refer the reader to [14] for the boundedness properties of oscillating
singular integrals on R

n .

This paper is organised as follows. In the short Sect. 2 we present the preliminaries on the
Fourier analysis on compact Lie groups. Our main theorem is proved in Sect. 3. Finally,
some examples are given in the case of the torus T

n, SU(2) ∼= S
3, and for oscillating Fourier

multipliers in Sect. 4.
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2 Group Fourier transform on compact Lie groups

In this section we present some preliminaries about the Fourier analysis on compact Lie
groups, for this we follow the book [39, Part III].

LetG be a compact Lie group and let dx be its normalised left-invariant Haar measure. To
define the group Fourier transform let us define the unitary dual ̂G of G. One reason for this
is that the Fourier inversion formula becomes a series over ̂G. Let us denote by ξ a strongly
continuous, unitary and irreducible representation of G, this means that,

• ξ ∈ Hom(G,U(Hξ )), for some finite-dimensional vector space Hξ
∼= C

dξ , i.e. ξ(xy) =
ξ(x)ξ(y) and for the adjoint of ξ(x), ξ(x)∗ = ξ(x−1), for every x, y ∈ G.

• The map (x, v) �→ ξ(x)v, from G × Hξ into Hξ is continuous.
• For every x ∈ G, and Wξ ⊂ Hξ , if ξ(x)Wξ ⊂ Wξ , then Wξ = Hξ or Wξ = ∅.

In view of the compactness of the group, any strongly continuous unitary representation on
G is continuous. Let Rep(G) be the set of unitary, continuous and irreducible representations
of G.

One can define an equivalence relation on Rep(G) as follows:

ξ1 ∼ ξ2, ξ1, ξ2 ∈ Rep(G) ⇐⇒ ∃A ∈ End(Hξ1 , Hξ2) : ∀x ∈ G, Aξ1(x)A
−1 = ξ2(x).

With respect to this equivalence relation the quotient

̂G := Rep(G)/∼,

is the unitary dual of G.

The Fourier transform ̂f of a distribution f ∈ D ′(G) is defined via,

̂f (ξ) ≡ (F f )(ξ) :=
∫

G

f (x)ξ(x)∗dx, [ξ ] ∈ ̂G.

The Fourier inversion formula

f (x) =
∑

[ξ ]∈̂G

dξTr[ξ(x) ̂f (ξ)]

holds if for example f ∈ L1(G). In this setting, the Plancherel theorem states that F :
L2(G) → L2(̂G) is an isometry, where the inner product on L2(̂G) is defined via

( f , g)L2(̂G) :=
∑

[ξ ]∈̂G

dξTr[ ̂f (ξ)ĝ(ξ)∗]. (2.1)

So, the Plancherel theorem takes the form

‖ f ‖2L2(G)
=

∑

[ξ ]∈̂G

dξ‖ ̂f (ξ)‖2HS. (2.2)

We have denoted by ‖ · ‖HS the usual Hilbert-Schmidt norm on every representation space
Hξ .

Remark 2.1 In the symbol condition (1.11),

Spect((1 + LG)
1
2 ) := {〈ξ 〉 : [ξ ] ∈ ̂G},

is the system of eigenvalues of the Bessel potential operator (1 + LG)
1
2 associated to the

positive Laplacian on G, which can be defined as follows. Let X = {X1, . . . , Xn} be an
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orthonormal basis of its Lie algebra g with respect to the unique (up to by a constant factor)
bi-invariant Riemannian metric g = (gx (·, ·))x∈G on G. The Laplace–Beltrami operator is
defined by (minus) the sum of squares

LG = −
n

∑

j=1

X2
j ,

and it is independent of the choice of the vector space basis X of g.Note thatLG is an elliptic
operator on G, which admits a self-adjoint extension on L2(G, dx). Such an extension is an
elliptic operator and its spectrum is a discrete set {λ[ξ ] : [ξ ] ∈ ̂G} that can be enumerated
by the unitary dual ̂G of the group. By the spectral mapping theorem one has that 〈ξ 〉 =
(1 + λ[ξ ])

1
2 , [ξ ] ∈ ̂G.

Remark 2.2 Observe that in view of the Plancherel theorem, the hypothesis (1.11) in Theorem

1.1 implies that the operator (1 + LG)
nθ
4 T admits a bounded extension on L2(G). Indeed,

the Plancherel theorems implies that

‖(1 + LG)
nθ
4 T f ‖2L2(G)

=
∑

[ξ ]∈̂G

dξ‖〈ξ 〉 nθ
2 ̂K (ξ) ̂f (ξ)‖2HS ≤

∑

[ξ ]∈̂G

dξ‖〈ξ 〉 nθ
2 ̂K (ξ)‖2op‖ ̂f (ξ)‖2HS

(2.3)

and in view of (1.11) we have that

‖(1 + LG)
nθ
4 T f ‖2L2(G)

≤ C2
∑

[ξ ]∈̂G

dξ‖ ̂f (ξ)‖2HS � ‖ f ‖2L2(G)
,

proving the boundedness of (1 + LG)
nθ
4 T on L2(G).

3 Proof of themain theorem

In this section we are going to prove that for a singular integral operator T satisfying (1.2)
and (1.12) there is a constant C > 0, such that

‖T f ‖L1,∞(G) := sup
α>0

α|{x ∈ G : |T f (x)| > α}| ≤ C‖ f ‖L1(G), (3.1)

with C independent of f . The positive Laplacian on G or on R
n will be denoted by LG and

by LRn , respectively. The Euclidean Fourier transform on R
n of a function V ∈ L1(Rn),

will be denoted byFRn V (	) = ∫Rn e−i2πX ·	V (X)dX , and it will be used at the end of this
section.

For this fix f ∈ L1(G), and let us consider its Calderón–Zygmund decomposition, see
Coifman and Weiss [20, Pages 73–74]. So, for any γ, α > 0, such that

αγ >
1

|G|
∫

G

| f (x)|dx, (3.2)

we can have the decomposition

f = g + b = g +
∑

j

b j

where the following properties are satisfied:
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(1) ‖g‖L∞ �G γα and ‖g‖L1 �G ‖ f ‖L1 .

(2) The b j ’s are supported in open balls I j = B(x j , r j ) where they satisfy the cancellation
property

∫

I j

b j (x)dx = 0. (3.3)

(3) Any component b j satisfies the L1-estimate

‖b j‖L1 �G (γ α)|I j |. (3.4)

(4) The sequence {|I j |} j ∈ �1 and
∑

j

|I j | �G (γ α)−1‖ f ‖L1 . (3.5)

(5)

‖b‖L1 ≤
∑

j

‖b j‖L1 �G ‖ f ‖L1 .

(6) There exists M0 ∈ N, such that any point x ∈ G belongs at most to M0 balls of the
collection I j .

First of all note that given an altitude αγ > 0, the Calderón–Zygmund decomposition above
works in the case where αγ > 1

|G| ∫ | f (x)|dx . We have denoted by |G| the volume of the
group G without assuming that the Haar measure is normalised.

We want to emphasize that when proving the weak (1,1) boundedness of T , one has
to estimate the quantity |{x ∈ G : |T f (x)| > γα}| only in the case where the Calderón-
Zymund decomposition in [20] is available, that is when αγ > 1

|G| ∫ | f (x)|dx . Indeed, when
estimating |{x ∈ G : |T f (x)| > αγ }| at any altitude αγ with 0 < αγ ≤ 1

|G| ∫ | f (x)|dx,
one trivially has that

|{x ∈ G : |T f (x)| > αγ }| ≤ |G| ≤ 1

αγ

∫

G

| f (x)|dx, (3.6)

as desired.
So, by fixing αγ as in (3.2), note that in terms of g, b and f one has the trivial estimate

|{x : |T f (x)| > α}| ≤ |{x : |Tg(x)| > α/2}| + |{x : |Tb(x)| > α/2}|.
The estimates ‖g‖L∞ � γα and ‖g‖L1 � ‖ f ‖L1 , imply that

‖g‖2L2 � ‖g‖L∞‖g‖L1 ≤ (γ α)‖ f ‖L1 .

So, by applying the Chebishev inequality and the L2-boundedness of T , we have

|{x : |Tg(x)| > α/2}| � 22α−2‖Tg‖L2 ≤ (2‖T ‖B (L2))
2α−2‖g‖2L2

≤ (2‖T ‖B (L2))
2α−2(γ α)‖ f ‖L1 � ‖T ‖2

B (L2)
γ α−1‖ f ‖L1

�γ α−1‖ f ‖L1 .

In what follows, let us denote I ∗ = ⋃

I ∗
j , where I ∗

j = B(x j , 2r j ), and let us make use of
the doubling condition on G in order to have the estimate

|I ∗
j | ∼ cn |I j |,
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from which follows that

|I ∗| �
∑

j

|I ∗
j | �

∑

j

|I j | � γ −1α−1‖ f ‖L1 .

Consequently, we have the estimates

|{x : |Tb(x)| > α/2}| ≤ |I ∗| + |{x ∈ G\I ∗ : |Tb(x)| > α/2}|
≤ (2

√
n)nγ −1α−1‖ f ‖L1 + |{x ∈ G\I ∗ : |Tb(x)| > α/2}|.

�γ α−1‖ f ‖L1 + |{x ∈ G\I ∗ : |Tb(x)| > α/2}|.
So, to conclude the inequality (3.1) we have to prove that

sup
α>0

α|{x ∈ G\I ∗ : |Tb(x)| > α/2}| ≤ C‖ f ‖L1 , (3.7)

with C independent of f . So, the proof of Theorem 1.1 consists of estimating the term

|{x ∈ G\I ∗ : |Tb(x)| > α/2}|.
Proof of Theorem 1.1 We start by considering only the case 0 < θ < 1. Indeed, the statement
for θ = 0 in Theorem 1.1 follows from the fundamental theorem of singular integrals due to
Coifman and Weiss, see [20, Theorem 2.4, Page 74].

From now, let us suppose that the diameter of the support of K is small, for instance, that

diam(supp(K )) < c,

where 0 < c ≤ 1 is small enough. In particular, we can take c small enough in order that we
can guarantee that the exponential mapping

ω = exp : ν → ν′, B(e, c) ⊂ ν′, (3.8)

is a diffeomorphism between two small neighborhoods ν′ and ν of the identity element e and
of the origin 0 ∈ g ∼= R

n, respectively.
For ε > 0 define

φ(y, ε) := 1

|B(e, ε)|1B(e,ε). (3.9)

Now, for any j, define

φ j (y) := φ
(

y, 2− 1
1−θ diam(I j )

1
1−θ

)

, (3.10)

b̃ j := b j (·) ∗ φ j , (3.11)

and

b̃ :=
∑

j

b̃ j . (3.12)

Note that

Tb =
∑

j

T b j . (3.13)

It is important to mention that in (3.13) the sums on the right hand side only runs over j whith
diam(I j ) < c. Indeed, for all x ∈ G\I ∗, the property of the support diam(supp(K )) < c,
implies that for all j with diam(I j ) ≥ c, we have that

Tb j = b j ∗ K = 0.
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Fig. 1 Let j ∈ N. The replacement b̃ j of b j is defined by modifying its support. To do so, we make the

convolution between b j with the L1-normalised function φ j whose support is proportional to R j .

So we only require to analyse the case where diam(I j ) < c. Indeed, for x ∈ G\I ∗, and j
such that diam(I j ) ≥ c,

b j ∗ K (x) =
∫

I j

K (y−1x)b j (y)dy.

Because, in the integral above x ∈ G\I ∗ and y ∈ I j ,

|y−1x | = dist(x, y) > diam(I j ) > c,

we have that the element y−1x is not in the support of K and then the integral vanishes.
In Figure 1 we compare the size of I j with the size of the support of φ j .

Now, going back to the analysis of (3.7), note that

∣

∣

∣

{

x ∈ G\I ∗ : |Tb(x)| >
α

2

}∣

∣

∣

≤
∣

∣

∣

{

x ∈ G\I ∗ : |Tb(x) − T b̃(x)| >
α

4

}∣

∣

∣ +
∣

∣

∣

{

x ∈ G\I ∗ : |T b̃(x)| >
α

4

}∣

∣

∣

≤ 4

α
‖T (b − b̃)‖L1(G\I ∗) +

∣

∣

∣

{

x ∈ G\I ∗ : |T b̃(x)| >
α

4

}∣

∣

∣ ,

and let us take into account the estimate:

‖T (b − b̃)‖L1(G\I ∗) =
∫

G\I ∗
|Tb(x) − T b̃(x)|dx

≤
∑

j

∫

G\I ∗
|Tb j (x) − T b̃ j (x)|dx .
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We are going to prove that T b̃ and T b̃ j are good replacements for Tb and Tb j , respectively,
on the set G\I ∗. Observe that

∫

G\I ∗
|Tb j (x) − T b̃ j (x)|dx =

∫

G\I ∗
|b j ∗ K (x) − b̃ j ∗ K (x)|dx

=
∫

G\I ∗
|b j ∗ K (x) − [b j ∗ φ j ∗ K ](x)|dx

=
∫

G\I ∗

∣

∣

∣

∣

∣

∣

∣

∫

I j

K (y−1x)b j (y)dy −
∫

I j

(φ j ∗ K )(y−1x)b j (y)dy

∣

∣

∣

∣

∣

∣

∣

dx

≤
∫

I j

∫

G\I ∗
|K (y−1x) − φ j ∗ K (y−1x)|dx |b j (y)|dy

≤
∫

I j

∫

|z|>diam(I j )

|K (z) − φ j ∗ K (z)|dz|b j (y)|dy

≤
∫

I j

∫

|z|>diam(I j )

|K (z) − φ j ∗ K (z)|dz|b j (y)|dy,

where, in the last line we have used the changes of variables x �→ z = y−1x, and then we
observe that |z| > diam(I j ) when x ∈ G\I ∗ and y ∈ I j . Using that φ j is supported in a ball
of radius

R j := 2− 1
1−θ diam(I j )

1
1−θ

and that ‖φ j‖L∞ ≤ 1/|B(e, R j )|, we have that
∫

|z|>diam(I j )

|K (z) − φ j ∗ K (z)|dz

=
∫

|z|>diam(I j )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

K (z)
∫

|y|<2
− 1
1−θ diam(I j )

1
1−θ

φ j (y)dy −
∫

|y|<2
− 1
1−θ diam(I j )

1
1−θ

K (y−1z)φ j (y)dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dz

=
∫

|z|>diam(I j )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

|y|<2
− 1
1−θ diam(I j )

1
1−θ

(K (z) − K (y−1z))φ j (y)dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dz

≤
∫

|y|<2
− 1
1−θ diam(I j )

1
1−θ

∫

|z|>diam(I j )

|K (y−1z) − K (z)|dz|φ j (y)|dy

≤ 1

|B(e, R j )|
∫

|y|<R j

∫

|z|>2R(1−θ)
j

|K (y−1z) − K (z)|dz dy
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� 1

Rn
j

∫

|y|<R j

∫

|z|>2R(1−θ)
j

|K (y−1z) − K (z)|dz dy

≤ [K ]H∞,θ (G),

where we have used that 2R1−θ
j = diam(I j ). Now, the inequalities above allow us to finish

the estimate of ‖T (b − b̃)‖L1(G\I ∗). Indeed,

‖T (b − b̃)‖L1(G\I ∗) ≤
∑

j

∫

I j

∫

G\I ∗
|K (y−1x) − φ j ∗ K (y−1x)|dx |b j (y)|dy

≤
∑

j

∫

I j

∫

|z|>diam(I j )

|K (z) − φ j ∗ K (z)|dz|b j (y)|dy

� [K ]H∞,θ (G)

∑

j

∫

I j

|b j (y)|dy ≤ [K ]H∞,θ (G)‖b‖L1

� [K ]H∞,θ (G)‖ f ‖L1 .

Putting together the estimates above we deduce that

∣

∣

∣

{

x ∈ G\I ∗ : |Tb(x)| >
α

2

}∣

∣

∣ ≤ 4

α
‖Tb − T b̃‖L1(G\I ∗) +

∣

∣

∣

{

x ∈ G\I ∗ : |T b̃(x)| >
α

4

}∣

∣

∣

� 4

α
[K ]H∞,θ (G)‖ f ‖L1 +

∣

∣

∣

{

x ∈ G\I ∗ : |T b̃(x)| >
α

4

}∣

∣

∣ .

Now, we will estimate the term in the right hand side of the previous inequality. Indeed, note
that

∣

∣

∣

{

x ∈ G\I ∗ : |T b̃(x)| >
α

4

}∣

∣

∣ ≤
∣

∣

∣

∣

{

x ∈ G\I ∗ : |T b̃(x)|2 >
α2

16

}∣

∣

∣

∣

≤ 16

α2 ‖T b̃‖2L2 .

From now, let us consider the positive operator

− �̃ = 1 + LG . (3.14)

Now, using (1.2) we deduce that T (−�̃)
nθ
4 is bounded on L2, (see Remark 2.2) and then

‖T b̃‖2L2 ≤ ‖T (−�̃)
nθ
4 ‖2

B (L2)
‖(−�̃)−

nθ
4 b̃‖2L2 .

In order to estimate the L2-norm, let us use the following lemmawhose proof we postpone
for a moment.

Lemma 3.1 The function F := (−�̃)− nθ
4 b̃ can be decomposed as the sums F = F1 + F2,

where ‖F2‖2L2 ≤ Cαγ ‖ f ‖L1 , and F1 is also a sum of functions F j
1 with the following

property.

• There exists M0 ∈ N, and A′ > 0, such that F1 = ∑

j :diam(I j )<1 F
j
1 , ‖F j

1 ‖2
L2 ≤

A′α2|I j |, and for any x ∈ R
n, there at most M0 values of j such that F j

1 (x) �= 0.
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Let us continue with the proof of Theorem 1.1. Using Lemma 3.1 and the inequalities in
(3.5) we have that

‖T b̃‖2L2 � ‖F1‖2L2 + ‖F2‖2L2 � αγ ‖ f ‖L1 +
∑

j

‖F j
1 ‖2L2

� αγ ‖ f ‖L1 +
∑

j

α2|I j | � αγ ‖ f ‖L1 + α2(γ α)−1‖ f ‖L1

= (γ −1 + γ )α‖ f ‖L1 .

Consequently
∣

∣

∣

{

x ∈ G\I ∗ : |T b̃(x)| >
α

4

}∣

∣

∣ � 16

α2 ‖T b̃‖2L2 � (γ −1 + γ )α−1‖ f ‖L1 .

Thus, we have proved that

|{x ∈ R
n : |T f (x)| > α}| ≤ Cγ,[K ]H∞,θ (G)

α−1‖ f ‖L1 , (3.15)

with C := Cγ,[K ]H∞,θ (G)
independent of f . Because γ is fixed we have proved the weak

(1, 1) type of T . Note that the L p-boundedness of T can be deduced from Marcinkiewicz
interpolation theorem and the standard duality argument. Thus, the proof is complete once
we proved the statement in Lemma 3.1. To do so, let us consider the right-convolution kernel

kθ := (−�̃)− nθ
4 δ of the operator (−�̃)− nθ

4 and let us split the function (−�̃)− nθ
4 b̃(x) as

follows:

(−�̃)−
nθ
4 b̃(x) =

∑

j

(−�̃)−
nθ
4 b̃ j (x) =

∑

j

b̃ j ∗ kθ (x)

=
∑

j :x∈I j
b̃ j ∗ kθ (x) +

∑

j :x�I j

b̃ j ∗ kθ (x) =: G1(x) + G2(x),

where G1(x) := ∑

j :x∼I j b̃ j ∗ kθ (x) and G2(x) := ∑

j :x�I j b̃ j ∗ kθ (x). We have denoted
by x ∼ I j , if x belongs to I j or to some I j ′ with non-empty intersection with I j . By the
properties of these sets there are at most M0 sets I j ′ such that I j ∩ I j ′ �= ∅.Also, the notation
x � I j will be employed to define the opposite of the previous property.

Let us prove the estimate

‖G2‖2L2 ≤ Cαγ ‖ f ‖L1 . (3.16)

Observe that

‖G2‖L1 =
∫

G

|
∑

j :x�I j

b j ∗ φ j ∗ kθ (x)|dx ≤
∑

j :x�I j

∫

G

|b j ∗ φ j ∗ kθ (x)|dx

≤
∑

j

‖b j ∗ φ j ∗ kθ‖L1 ≤
∑

j

‖b j‖L1‖φ j ∗ kθ‖L1 .

Note that (−�̃)− nθ
4 is a pseudo-differential operator of order −nθ/2, and consequently, its

kernel satisfies the estimate

|kθ (x)| ≤ C |x |−(− nθ
2 +n) � |x |−n(1− θ

2 ), x ∈ G\{e}.
The condition 0 < θ < 1, implies that kθ is an integrable distribution and then

‖φ j ∗ kθ‖L1 � ‖φ j‖L1‖kθ‖L1 = ‖kθ‖L1 < ∞.
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So, we have that

‖G2‖L1 �
∑

j

‖b j‖L1 � ‖ f ‖L1 .

So, for the proof of (3.16), and in view of the inequality ‖G2‖2L2 ≤ ‖G2‖L1‖G2‖L∞ is
enough to show that ‖G2‖L∞ � αγ ‖ f ‖L1 . To do this, let us consider j such that x � I j .
Since b̃ j ∗ kθ = b j ∗ φ j ∗ kθ , one has that

|b j ∗ φ j ∗ kθ (x)| ≤
∫

I j

|φ j ∗ kθ (y
−1x)||b j (y)|dy ≤ sup

y∈I j
|φ j ∗ kθ (y

−1x)|
∫

I j

|b j (y)|dy

= sup
y∈I j

|φ j ∗ kθ (y
−1x)||I j | × 1

|I j |
∫

I j

|b j (y)|dy.

To continue, we follow as in [24, Page 26] the observation of Fefferman, that in view of
the property x � I j , we have that φ j ∗ kθ (y−1x) is essentially constant over the ball I j =
B(x j , r j ) and we can estimate

sup
y∈I j

|φ j ∗ kθ (y
−1x)||I j | �

∫

I j

|φ j ∗ kθ (y
′−1x)|dy′. (3.17)

On the other hand, observe that the positivity of the kernel kθ , and of φ j leads to

∫

I j

|φ j ∗ kθ (y
′−1x)|dy′ 1

|I j |
∫

I j

|b j (y)|dy =
∫

G

|φ j ∗ kθ (y
′−1x)|

⎛

⎜

⎝

1

|I j |
∫

I j

|b j (y)|dy
⎞

⎟

⎠ 1I j (y
′)dy′

=
⎛

⎜

⎝

1

|I j |
∫

I j

|b j (y)|dy × 1I j

⎞

⎟

⎠ ∗ φ j ∗ kθ (x).

Consequently, we have

|G2(x)| ≤
∑

j :x�I j

|b̃ j ∗ kθ (x)| �
∑

j :x�I j

⎛

⎜

⎝

1

|I j |
∫

I j

|b j (y)|dy × 1I j

⎞

⎟

⎠ ∗ φ j ∗ kθ (x)

�
∑

j :x�I j

γα × 1I j ∗ φ j ∗ kθ (x) =
∫

G

∑

j :x�I j

γα × 1I j ∗ φ j (z)kθ (z
−1x)dz

� γα‖kθ‖L1

∥

∥

∥

∥

∥

∥

∑

j :x�I j

1I j ∗ φ j

∥

∥

∥

∥

∥

∥

L∞

.

By observing that the supports of the functions 1I j ∗ φ j ’s have bounded overlaps we have

that
∥

∥

∥

∑

j :x�I j 1I j ∗ φ j

∥

∥

∥

L∞ < ∞, and that ‖G2‖L∞ � γα.

It remains only to prove that ‖G1‖2L2 � α‖ f ‖L1 . Let us define

G j (x) :=
{

b j ∗ φ j ∗ kθ (x), x ∈ I j ,

0, otherwise.
(3.18)
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Then G1 = ∑

j G
j and in view of the finite overlapping of the balls I j ’s, there is M0 ∈ N,

such that for any x ∈ G, G j (x) �= 0, for at most M0 values of j . Therefore, we have that

∫
G

|G1(x)|2dx ≤ M0

∑

j

∫
G

|G j (x)|2dx =
∑

j

∫
I j

|b j ∗ φ j ∗ kθ (x)|2dx

≤
∑

j

‖b j‖2L1‖φ j ∗ kθ‖2L2 ≤
∑

j

α2γ 2|I j |2‖φ j ∗ kθ‖2L2 .

Because our argument is purely local let us use the diffeomorphism ω = exp : ν → ν′ in
(3.8). Because B(e, c) ⊂ ν′,we can estimate the norm ‖φ j ∗kθ‖L2 in a small neighbourhood
ν′ of the identity element e ∈ G.Note that for any j with diam(I j ) < c,we have the inclusion
B(e, R j ) ⊂ ν′. So, we have

‖φ j ∗ kθ‖2L2 = ‖(1 + LG)−
nθ
4 φ j‖2L2 = ‖φ j‖H−nθ/2 � ‖(1 + LRn )−

nθ
4 φ′

j‖2L2 ,

where

φ′
j = φ j ◦ ω = 1

B(e, R j )
1B(e,R j ) ◦ ω, supp(φ′

j ) ⊂ ν.

Note that (1 + LRn )− nθ
4 is bounded on L2, and clearly φ′

j ∈ L2, so that φ′
j ∈ Dom((1 +

LRn )− nθ
4 ). Also,

supp[φ′
j ] ⊂ B(0, R′

j ), R′
j ∼ R j . (3.19)

Define for any j,

ψ ′
j (X) := |B(0, R′

j )|φ′
j (R

′
j X), X ∈ ν.

Then, one has the identity

φ′
j (X) = 1

|B(0, R′
j )|

ψ ′
j

(

X

R′
j

)

, X ∈ ν.

Observe that |B(0, R′
j )| = vn R′

j
n
, where vn is the volume of the unite ball B(0, 1). Also,

note that ‖ψ ′
j‖L∞ = 1, and supp(ψ ′

j ) ⊂ B(0, 1). Using the Plancherel theorem, we have
that

‖(1 + LRn )−
nθ
4 φ′

j‖L2 = ‖(1 + |η|2)− nθ
4 FRn [φ′

j ](η)‖L2

= ‖(1 + |η|2)− nθ
4 FRn

[

1

|B(0, R′
j )|

ψ ′
j

(

·
R′
j

)]

(η) ‖L2

= (1/vn)‖(1 + |η|2)− nθ
4 FRn

[

1

R′
j
n ψ ′

j

(

·
R′
j

)]

(η) ‖L2

= (1/vn)‖(1 + |η|2)− nθ
4 FRn [ψ ′

j ]
(

R′
jη

)

‖L2 .

Observe that

‖(1 + |η|2)− nθ
4 FRn [ψ ′

j ]
(

R jη
) ‖2L2 =

∫

|(1 + |η|2)− nθ
4 FRn [ψ ′

j ]
(

R jη
) |2dη

= R′
j
−n

∫

|(1 + |R′
j
−1z|2)− nθ

4 FRn [ψ ′
j ](z)|2dz
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= R′
j
−n R′

j
nθ

∫

|(R′
j + |z|2)− nθ

4 FRn [ψ ′
j ](z)|2dz

≤ R′
j
−n R′

j
nθ

∫

|(|z|2)− nθ
4 FRn [ψ ′

j ](z)|2dz

� R′
j
−n R′

j
nθ

∫

|(−�)−
nθ
4 ψ ′

j (x)|2dx

= R−n(1−θ)
j ‖(−�)−

nθ
4 ψ ′

j‖2L2 .

By the compactness ofG, for all ε > 0, there exists a finite number of elements xε
0 = eG , xε

k ,

1 ≤ k ≤ N0(ε), in G, and some smooth functions χε
k ∈ C∞(G, [0, 1]), supported in

B(eG , ε
2 ), such that

G =
N0(ε)
⋃

k=1

B(xε
k , ε/4), and

N0(ε)
∑

j=0

χε
k (x−1

k x) = 1, x ∈ G. (3.20)

Note that for ε > 0 small enough, the support of any x �→ χε
k (x−1

k x) is inside of ν′. In
consequence, we can estimate

‖(−�)−
nθ
4 ψ ′

j‖L2 � ‖(−LG)−
nθ
4 ψ ′

j ◦ exp‖L2 ≤
N0(ε)
∑

j=0

‖(−LG)−
nθ
4 [ψ ′

j ◦ exp · χε
k (x−1

k ·)]‖L2

�
N0(ε)
∑

j=0

‖ψ ′
j ◦ exp · χε

k (x−1
k ·)‖L2 � ‖ψ ′

j ◦ exp‖L2 � ‖ψ ′
j‖L2 ,

where we have used the L2-boundedness of the operator (−LG)− nθ
4 in view of the Stein

identity (see [43, Page 58])

(−LG)−
nθ
4 = (−LG + ProjKer(−LG )

)− nθ
4 − ProjKer(−LG ),

and of Remark 2.4 of [40]. Indeed, we have that (−LG)− nθ
4 is a pseudo-differential operator

on G of order −nθ/2 and hence bounded on L2(G). Note that, this argument does not apply
in the case of R

n because the spectrum of the Euclidean Laplacian is continuous and the
negative powers of −�Rn are not pseudo-differential operators while the powers of 1−�Rn

are pseudo-differential operators with symbols in the Kohn-Nirenberg classes, see e.g. Taylor
[45].

Continuing with the proof, since ‖ψ j‖L∞ = 1 and ψ j is supported in the unit ball, we
have that ‖ψ j‖L2 ≤ 1. Consequently,

‖φ j ∗ kθ‖2L2 � R−n(1−θ)
j ∼ |I j |−1.

Finally, we deduce that

∫
G

|G1(x)|2dx ≤
∑

j

α2γ 2|I j |2‖φ j ∗ kθ‖2L2 �
∑

j

α2γ 2|I j |2|I j |−1 = α2γ 2
∑

j

|I j |

� αγ ‖ f ‖L1 �γ α‖ f ‖L1 ,

in view of (3.5). Consequently, we can take F2 := G2, F1 := G1 and F j
1 := G j

1 . Thus, the
proof of Lemma 3.1 is complete as well as the proof of Theorem 1.1. ��
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4 Examples

In this section we give some applications of Theorem 1.1 on the torus, on SU(2) ∼= S
3 and

for oscillating multipliers. We refer the reader to [13, Section 4] for a variety of examples on
the boundedness of oscillating singular integrals on Lie groups of polynomial growth.

4.1 Oscillating integrals on the torusT
n

LetG = T
n ≡ R

n/Z
n,be then-torus. In this casewehave the identification̂T

n = {e�}�∈Zn ∼
Z
n for its unitary dual. We have denoted e� to the exponential function e�(x) = ei2π�·x ,

x = (x1, . . . , xn) ∈ T
n .

In terms of the Fourier transform of a distribution K on the torus

̂K (�) := ∫
Tn

e−�(x)K (x)dx, � ∈ Z
n, (4.1)

the Fourier transform condition (1.11) becomes equivalent to the estimate

∀� ∈ Z
n, |̂K (�)| ≤ C〈�〉− nθ

2 , 〈�〉 := (1 + 4π2|�|2) 1
2 ∼ |�| :=

√

�21 + · · · + �2n . (4.2)

Note that the kernel condition (1.12) takes the form

[K ]H∞,θ = sup
R>0

sup
|y|<R

∫

|x |≥2R1−θ

|K (x − y) − K (x)|dxdy < ∞. (4.3)

In view of Theorem 1.1, a convolution operator T associated to a convolution kernel K ,

satisfying the Fourier transform condition (4.2) and the smoothness condition (4.3) is of weak
(1,1) type, that is T : L1(Tn) → L1,∞(Tn) is bounded. As the referee of this manuscript
pointed out, in the case of the torus T

n this continity result should also be just a special case
of the known result due to Fefferman [24] on R

n for a distributions K with its support small
enough as a consequence of a periodisation argument (see e.g. [39, Chapters III and IV]).

4.2 Oscillating integrals on SU(2) ∼= S
3

Let us consider the compact Lie group of complex unitary 2 × 2-matrices

SU(2) = {X = [Xi j ]2i, j=1 ∈ C
2×2 : X∗ = X−1}, X∗ := X

t = [X ji ]2i, j=1.

Let us consider the left-invariant first-order differential operators

∂+, ∂−, ∂0 : C∞(SU(2)) → C∞(SU(2)),

called creation, annihilation, and neutral operators respectively, (see Definition 11.5.10 of
[39]) and let us define

X1 = − i

2
(∂− + ∂+), X2 = 1

2
(∂− − ∂+), X3 = −i∂0,

where X3 = [X1, X2]. The system X = {X1, X2, X3} is an orthonormal basis of the Lie
algebra su(2) of SU(2), and its positivie Laplacian is given by

LSU(2) = −X2
1 − X2

2 − X2
3 = −∂20 − 1

2
[∂+∂− + ∂−∂+]. (4.4)
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We record that the unitary dual of SU(2) (see [39]) can be identified as

̂SU(2) ≡ {[tl ] : 2l ∈ N, dl := dim tl = (2l + 1)} ∼ 1

2
N. (4.5)

There are explicit formulae for tl as functions of Euler angles in terms of the so-called
Legendre-Jacobi polynomials, see [39]. Again, by following e.g. [39], the spectrum of the
positive Laplacian LSU(2) can be indexed by the sequence

λ� := �(� + 1), � ∈ 1

2
N.

Because n = dim(SU(2)) = 3, the Fourier transform condition (1.11) takes the form

∃C > 0, ∀� ∈ 1

2
N, ‖̂K (�)‖op ≤ C(1 + �(� + 1))−

3θ
4 ∼ (1 + �)−

3θ
2 , (4.6)

where ̂K (�) = ∫SU(2) K (Z)t�(Z)∗dZ , is the Fourier transform of the group of K . In view
of Theorem 1.1, if K satisfies (4.6) and the kernel condition

[K ]H∞,θ := sup
R>0

sup
|Y |<R

∫

|X |≥2R1−θ

|K (Y−1X) − K (X)|dXdY < ∞, (4.7)

then T is of weak (1,1) type, that is T : L1(SU(2)) → L1,∞(SU(2)) extends to a bounded
operator. In (4.7), |X | denotes the norm of X ∈ SU(2) with respect to the geodesic distance
on SU(2).

4.3 Application to oscillatingmultipliers

Let us illustrate our main Theorem 1.1 in the context of oscillating Fourier multipliers. On
G, the prototype of a oscillating singular integral is the spectral multiplier of LG , given by

Tθ (LG) := (1 + LG)−
nθ
4 ei(1+LG )

θ
2
, 0 ≤ θ < 1. (4.8)

Indeed, Tθ (LG) is a convolution operator with right-convolution kernel K = Kθ whose
Fourier transform is given by

̂K (ξ) = 〈ξ 〉− nθ
2 ei〈ξ〉θ , 〈ξ 〉 := (1 + λ[ξ ])

1
2 , [ξ ] ∈ ̂G.

Let d(x, y) be the geodesic distance on G induced by the Riemannian metric g. It was

proved by Chen and Fan in [15] that K (x) behaves essentially as cnd(x, e)−neic
′
nd(x,e)θ

′
,

where θ ′ = θ
θ−1 , and consequently that

|∇K (x)| = |(X1K (x), . . . , XnK (x))| � d(x, e)−n−1+θ ′
,

from which it is well known that K satisfies (1.12), that is,

[K ]H∞,θ := sup
0<R≤1

sup
|y|≤R

∫

|x |≥2R1−θ

|K (y−1x) − K (x)|dx < ∞,

justifying the term ‘oscillating’ for this family of multipliers. Using a smooth cut-off function
ψ with small compact support (for instance assume that diam(supp(ψ)) < 1), one can write
the operator Tθ (LG) = T1+T2,with T1 associated to the right-convolution kernel K1 = ψK ,

and K2 = K − K1, and then T2 is bounded on L1(G). In view of Theorem 1.1, one can use

123



   26 Page 20 of 21 D. Cardona, M. Ruzhansky

that T1 is of weak (1,1) type, and then one can deduce that Tθ (LG) extend to an operator of
weak (1,1) type.

Remark 4.1 By following the analysis of pseudo-differential operators under local coordi-
nates systems, one can prove that for 0 ≤ θ < 1

2 , the operator Tθ (LG) belongs to the
Hörmander class Op(Sm1−θ,θ ) on G,with the orderm = − nθ

2 , see e.g the book of Taylor [45]
for details.

By microlocalising the Fefferman weak (1,1) estimate in [24], we deduce that for any
0 ≤ θ < 1

2 , Tθ (LG) extends to an operator of weak (1, 1) type. This is consequence of the
fact that for all 0 ≤ θ < 1

2 , the class Op(S
m
1−θ,θ ) is invariant under changes of coordinates.

However, the range 1
2 ≤ θ < 1 can be covered by our Theorem 1.1.

We end this remark by observing that the boundedness of (4.8) from the Hardy space
H1(G) into L1(G) has been proved byChen and Fan in [15] in the complete range 0 ≤ θ < 1.

Remark 4.2 Other generalisations on compact Lie groups of estimates for oscillating integrals
to pseudo-differential operators have been considered in the papers [8, 22] and [40]. We refer
the reader to [10, Chapter V] for Fourier transform conditions of Fourier multipliers of weak
(1, 1) type on compact Lie groups in subelliptic settings.
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