15 research outputs found

    Observations of Lyα\alpha Emitters at High Redshift

    Full text link
    In this series of lectures, I review our observational understanding of high-zz Lyα\alpha emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at z0z\sim 0 to z10z\sim 10. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs' physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-zz galaxies, high-zz analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Lyα\alpha sources extended over 10100\sim 10-100 kpc, dubbed Lyα\alpha blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Lyα\alpha damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {\sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., & Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the lecture program including the video recording and ppt files : https://obswww.unige.ch/Courses/saas-fee-2016/program.cg

    Distributive Disjoint Polymorphism for Compositional Programming

    No full text
    Popular programming techniques such as shallow embeddings of Domain Specific Languages (DSLs), finally tagless or object algebras are built on the principle of compositionality. However, existing programming languages only support simple compositional designs well, and have limited support for more sophisticated ones. This paper presents the F+i calculus, which supports highly modular and compositional designs that improve on existing techniques. These improvements are due to the combination of three features: disjoint intersection types with a merge operator; parametric (disjoint) polymorphism; and BCD-style distributive subtyping. The main technical challenge is F+i’s proof of coherence. A naive adaptation of ideas used in System F’s parametricity to canonicity (the logical relation used by F+i to prove coherence) results in an ill-founded logical relation. To solve the problem our canonicity relation employs a different technique based on immediate substitutions and a restriction to predicative instantiations. Besides coherence, we show several other important meta-theoretical results, such as type-safety, sound and complete algorithmic subtyping, and decidability of the type system. Remarkably, unlike F<:’s bounded polymorphism, disjoint polymorphism in F+i supports decidable type-checking.status: Published onlin
    corecore