550 research outputs found
Chaotic Scattering in Heavy--Ion Reactions
We discuss the relevance of chaotic scattering in heavy--ion reactions at
energies around the Coulomb barrier. A model in two and three dimensions which
takes into account rotational degrees of freedom is discussed both classically
and quantum-mechanically. The typical chaotic features found in this
description of heavy-ion collisions are connected with the anomalous behaviour
of several experimental data.Comment: 35 pages in RevTex (version 3.0) plus 27 PostScript figures
obtainable by anonymous ftp from VAXFCT.CT.INFN.IT in directory kaos. Fig. 1
upon request to the authors. To be published in the October Focus issue on
chaotic scattering of CHAO
Production of -particle condensate states in heavy-ion collisions
The fragmentation of quasi-projectiles from the nuclear reaction +
at 25 MeV/nucleon was used to produce excited states candidates to
-particle condensation. The experiment was performed at LNS-Catania
using the CHIMERA multidetector. Accepting the emission simultaneity and
equality among the -particle kinetic energies as experimental criteria
for deciding in favor of the condensate nature of an excited state, we analyze
the and states of C and the state of O. A
sub-class of events corresponding to the direct 3- decay of the Hoyle
state is isolated.Comment: contribution to the 2nd Workshop on "State of the Art in Nuclear
Cluster Physics" (SOTANCP2), Universite Libre de Bruxelles (Belgium), May
25-28, 2010, to be published in the International Journal of Modern Physics
Dipolar degrees of freedom and Isospin equilibration processes in Heavy Ion collisions
Background: In heavy ion collision at the Fermi energies Isospin
equilibration processes occur- ring when nuclei with different charge/mass
asymmetries interacts have been investigated to get information on the
nucleon-nucleon Iso-vectorial effective interaction. Purpose: In this paper,
for the system 48Ca +27 Al at 40 MeV/nucleon, we investigate on this process by
means of an observable tightly linked to isospin equilibration processes and
sensitive in exclusive way to the dynamical stage of the collision. From the
comparison with dynamical model calculations we want also to obtain information
on the Iso-vectorial effective microscopic interaction. Method: The average
time derivative of the total dipole associated to the relative motion of all
emitted charged particles and fragments has been determined from the measured
charges and velocities by using the 4? multi-detector CHIMERA. The average has
been determined for semi- peripheral collisions and for different charges Zb of
the biggest produced fragment. Experimental evidences collected for the systems
27Al+48Ca and 27Al+40Ca at 40 MeV/nucleon used to support this novel method of
investigation are also discussed.Comment: Submitted for publication on Phys. Rev. C. 0n 24-oct-201
Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear matter
We show new data from the Ni+Sn and Ni+Sn
reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS
and compared with the reverse kinematics reactions at the same incident beam
energy (35 A MeV). Analyzing the data with the method of relative velocity
correlations, fragments coming from statistical decay of an excited
projectile-like (PLF) or target-like (TLF) fragments are discriminated from the
ones coming from dynamical emission in the early stages of the reaction. By
comparing data of the reverse kinematics experiment with a stochastic mean
field (SMF) + GEMINI calculations our results show that observables from neck
fragmentation mechanism add valuable constraints on the density dependence of
symmetry energy. An indication is found for a moderately stiff symmetry energy
potential term of EOS.Comment: Talk given by E. De Filippo at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Symmetry, Gravity and Noncommutativity
We review some aspects of the implementation of spacetime symmetries in
noncommutative field theories, emphasizing their origin in string theory and
how they may be used to construct theories of gravitation. The geometry of
canonical noncommutative gauge transformations is analysed in detail and it is
shown how noncommutative Yang-Mills theory can be related to a gravity theory.
The construction of twisted spacetime symmetries and their role in constructing
a noncommutative extension of general relativity is described. We also analyse
certain generic features of noncommutative gauge theories on D-branes in curved
spaces, treating several explicit examples of superstring backgrounds.Comment: 52 pages; Invited review article to be published in Classical and
Quantum Gravity; v2: references adde
- …