12 research outputs found

    Shape, density, and geology of the nucleus of Comet 103P/Hartley 2

    Get PDF
    a b s t r a c t Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds <40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a ''waist'' between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200-400 kg m À3 . Such a mean density suggests mass loss per orbit of >1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object's complex rotation

    Shape, density, and geology of the nucleus of Comet 103P/Hartley 2

    Get PDF
    International audienceData from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds \textless40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a “waist” between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200-400 kg m(-3). Such a mean density suggests mass loss per orbit of \textgreater1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object's complex rotation. (C) 2012 Elsevier Inc. All rights reserved
    corecore