12 research outputs found

    Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma

    Get PDF
    Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis

    Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma

    Get PDF
    Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis. Rhabdomyosarcomas are tumours blocked in myogenic differentiation, which despite the expression of master muscle regulatory factors, including MYOD, are unable to differentiate. Here, the authors show that SNAI2 is upregulated by MYOD through super enhancers, binds to MYOD target enhancers, and arrests differentiation

    Aberrant function of the C-terminal tail of HIST1H1E Aacelerates cellular senescence and causes premature aging

    Get PDF
    Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging

    Pharmacological inhibition of EZH2 as a promising differentiation therapy in embryonal RMS

    Get PDF
    Background: Embryonal Rhabdomyosarcoma (RMS) is a pediatric soft-tissue sarcoma derived from myogenic precursors that is characterized by a good prognosis in patients with localized disease. Conversely, metastatic tumors often relapse, leading to a dismal outcome. The histone methyltransferase EZH2 epigenetically suppresses skeletal muscle differentiation by repressing the transcription of myogenic genes. Moreover, de-regulated EZH2 expression has been extensively implied in human cancers. We have previously shown that EZH2 is aberrantly over-expressed in RMS primary tumors and cell lines. Moreover, it has been recently reported that EZH2 silencing in RD cells, a recurrence-derived embryonal RMS cell line, favors myofiber-like structures formation in a pro-differentiation context. Here we evaluate whether similar effects can be obtained also in the presence of growth factor-supplemented medium (GM), that mimics a pro-proliferative microenvironment, and by pharmacological targeting of EZH2 in RD cells and in RD tumor xenografts.Methods: Embryonal RMS RD cells were cultured in GM and silenced for EZH2 or treated with either the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep) that induces EZH2 degradation, or with a new class of catalytic EZH2 inhibitors, MC1948 and MC1945, which block the catalytic activity of EZH2. RD cell proliferation and myogenic differentiation were evaluated both in vitro and in vivo.Results: Here we show that EZH2 protein was abnormally expressed in 19 out of 19 (100%) embryonal RMS primary tumors and cell lines compared to their normal counterparts. Genetic down-regulation of EZH2 by silencing in GM condition reduced RD cell proliferation up-regulating p21Cip1. It also resulted in myogenic-like differentiation testified by the up-regulation of myogenic markers Myogenin, MCK and MHC. These effects were reverted by enforced over-expression of a murine Ezh2, highlighting an EZH2-specific effect. Pharmacological inhibition of EZH2 using either DZNep or MC inhibitors phenocopied the genetic knockdown of EZH2 preventing cell proliferation and restoring myogenic differentiation both in vitro and in vivo.Conclusions: These results provide evidence that EZH2 function can be counteracted by pharmacological inhibition in embryonal RMS blocking proliferation even in a pro-proliferative context. They also suggest that this approach could be exploited as a differentiation therapy in adjuvant therapeutic intervention for embryonal RMS. © 2014 Ciarapica et al.; licensee BioMed Central Ltd

    The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx)

    Get PDF
    The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS. © 2014 Macmillan Publishers Limited

    Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common type of liver cancer in humans. The focal adhesion tyrosine kinase (FAK) is often over-expressed in human HCC and FAK inhibition may reduce HCC cell invasiveness. However, the anti-oncogenic effect of FAK knockdown in HCC cells remains to be clarified. We found that FAK depletion in HCC cells reduced in vitro and in vivo tumorigenicity, by inducing G2/M arrest and apoptosis, decreasing anchorage-independent growth, and modulating the expression of several cancer-related genes. Among these genes, we showed that FAK silencing decreased transcription and nuclear localization of enhancer of zeste homolog 2 (EZH2) and its tri-methylation activity on lysine 27 of histone H3 (H3K27me3). Accordingly, FAK, EZH2 and H3K27me3 were concomitantly upregulated in human HCCs compared to non-tumor livers. In vitro experiments demonstrated that FAK affected EZH2 expression and function by modulating, at least in part, p53 and E2F2/3 transcriptional activity. Moreover, FAK silencing downregulated both EZH2 binding and histone H3K27me3 levels at the promoter of its target gene NOTCH2. Finally, we found that pharmacological inhibition of FAK activity resembled these effects although milder. In summary, we demonstrate that FAK depletion reduces HCC cell growth by affecting cancer-promoting genes including the pro-oncogene EZH2. Furthermore, we unveil a novel unprecedented FAK/EZH2 crosstalk in HCC cells, thus identifying a targetable network paving the way for new anticancer therapies

    The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx)

    No full text
    Abstract The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS

    The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx)

    No full text
    The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS.</p
    corecore