1,901 research outputs found

    Electromagnetic form factor via Minkowski and Euclidean Bethe-Salpeter amplitudes

    Full text link
    The electromagnetic form factors calculated through Euclidean Bethe-Salpeter amplitude and through the light-front wave function are compared with the one found using the Bethe-Salpeter amplitude in Minkowski space. The form factor expressed through the Euclidean Bethe-Salpeter amplitude (both within and without static approximation) considerably differs from the Minkowski one, whereas form factor found in the light-front approach is almost indistinguishable from it.Comment: 3 pages, 2 figures. Contribution to the proceedings of the 20th International Conference on Few-Body Problems in Physics (FB20), Pisa, Italy, September 10-14, 2007. To be published in "Few-Body Systems

    Bethe-Salpeter equation for doubly heavy baryons in the covariant instantaneous approximation

    Get PDF
    In the heavy quark limit, a doubly heavy baryon is regarded as composed of a heavy diquark and a light quark. We establish the Bethe-Salpeter (BS) equations for the heavy diquarks and the doubly heavy baryons, respectively, to leading order in a 1/mQ1/m_{Q} expansion. The BS equations are solved numerically under the covariant instantaneous approximation with the kernels containing scalar confinement and one-gluon-exchange terms. The masses for the heavy diquarks and the doubly heavy baryons are obtained and the non-leptonic decay widths for the doubly heavy baryons emitting a pseudo-scalar meson are calculated within the model.Comment: Corrections to the text, two references added, version accepted for publication in Physical Review

    In memoriam of AndrĂ©s PĂ©rez-EstaĂșn

    Get PDF
    Non

    A new vibrational level of the H2+_2^+ molecular ion

    Get PDF
    A new state of the H2+_2^+ molecular ion with binding energy of 1.09×10−9\times10^{-9} a.u. below the first dissociation limit is predicted, using highly accurate numerical nonrelativistic quantum calculations. It is the first L=0 excited state, antisymmetric with respect to the exchange of the two protons. It manifests itself as a huge p-H scattering length of a=750±5a=750\pm 5 Bohr radii.Comment: 6 pages + 3 figure

    Manifestation of three-body forces in three-body Bethe-Salpeter and light-front equations

    Full text link
    Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.Comment: 24 pages, 8 figures, submitted in Few-Body System

    Antiproton-Hydrogen annihilation at sub-kelvin temperatures

    Get PDF
    The main properties of the interaction of ultra low-energy antiprotons (E≀10−6% E\le10^{-6} a.u.) with atomic hydrogen are established. They include the elastic and inelastic cross sections and Protonium (Pn) formation spectrum. The inverse Auger process (Pn+e→H+pˉPn+e \to H+\bar{p}) is taken into account in the framework of an unitary coupled-channels model. The annihilation cross-section is found to be several times smaller than the predictions made by the black sphere absorption models. A family of pˉH\bar{p}H nearthreshold metastable states is predicited. The dependence of Protonium formation probability on the position of such nearthreshold S-matrix singularities is analysed. An estimation for the HHˉH\bar{H} annihilation cross section is obtained.Comment: latex.tar.gz file, 22 pages, 9 figure
    • 

    corecore