7,958 research outputs found

    A note on shell models for MHD Turbulence

    Full text link
    We investigate the time evolution of two different (GOY-like) shell models which have been recently proposed to describe the gross features of MHD turbulence. We see that, even if they are formally of the same type sharing with MHD equations quadratic couplings and similar conserved quantities, fundamental differences exist which are related to the ideal invariants.Comment: 6 pages, 5 figures.eps, to appear in Europhysics Letter

    Characterization of disturbance sources for LISA: torsion pendulum results

    Full text link
    A torsion pendulum allows ground-based investigation of the purity of free-fall for the LISA test masses inside their capacitive position sensor. This paper presents recent improvements in our torsion pendulum facility that have both increased the pendulum sensitivity and allowed detailed characterization of several important sources of acceleration noise for the LISA test masses. We discuss here an improved upper limit on random force noise originating in the sensor. Additionally, we present new measurement techniques and preliminary results for characterizing the forces caused by the sensor's residual electrostatic fields, dielectric losses, residual spring-like coupling, and temperature gradients.Comment: 11 pages, 8 figures, accepted for publication Classical and Quantum Gravit

    Position and velocity space diffusion of test particles in stochastic electromagnetic fields

    Full text link
    The two--dimensional diffusive dynamics of test particles in a random electromagnetic field is studied. The synthetic electromagnetic fluctuations are generated through randomly placed magnetised ``clouds'' oscillating with a frequency ω\omega. We investigate the mean square displacements of particles in both position and velocity spaces. As ω\omega increases the particles undergo standard (Brownian--like) motion, anomalous diffusion and ballistic motion in position space. Although in general the diffusion properties in velocity space are not trivially related to those in position space, we find that energization is present only when particles display anomalous diffusion in position space. The anomalous character of the diffusion is only in the non--standard values of the scaling exponents while the process is Gaussian.Comment: 10 pages, 4 figure

    Choreographies with Secure Boxes and Compromised Principals

    Get PDF
    We equip choreography-level session descriptions with a simple abstraction of a security infrastructure. Message components may be enclosed within (possibly nested) "boxes" annotated with the intended source and destination of those components. The boxes are to be implemented with cryptography. Strand spaces provide a semantics for these choreographies, in which some roles may be played by compromised principals. A skeleton is a partially ordered structure containing local behaviors (strands) executed by regular (non-compromised) principals. A skeleton is realized if it contains enough regular strands so that it could actually occur, in combination with any possible activity of compromised principals. It is delivery guaranteed (DG) realized if, in addition, every message transmitted to a regular participant is also delivered. We define a novel transition system on skeletons, in which the steps add regular strands. These steps solve tests, i.e. parts of the skeleton that could not occur without additional regular behavior. We prove three main results about the transition system. First, each minimal DG realized skeleton is reachable, using the transition system, from any skeleton it embeds. Second, if no step is possible from a skeleton A, then A is DG realized. Finally, if a DG realized B is accessible from A, then B is minimal. Thus, the transition system provides a systematic way to construct the possible behaviors of the choreography, in the presence of compromised principals

    Hungarian International Development Cooperation: Context, Stakeholders and Performance

    Get PDF
    This paper explores the domestic and international context of Hungary's emerging international development policy. Specifically, it looks at three factors that may influence how this policy operates: membership in the European Union (EU) and potential ‘Europeanization’, Hungary's wider foreign policy strategy, and the influence of domestic stakeholders. In order to uncover how these factors affect the country's international development policy, semi-structured interviews were carried out with the main stakeholders. The main conclusions are: (1) While accession to the EU did play a crucial role in restarting Hungary's international development policy, the integration has had little effect since then; (2) international development policy seems to serve mainly Hungary's regional strategic foreign policy and economic interests, and not its global development goals; and (3) although all the domestic development stakeholders are rather weak, the Ministry of Foreign Affairs (MFA) still seems to play a dominating role. Convergence with European requirements and best practices is, therefore, clearly hindered by foreign policy interests and also by the weakness of non- governmental stakeholders

    Exact Periodic Solutions of Shells Models of Turbulence

    Full text link
    We derive exact analytical solutions of the GOY shell model of turbulence. In the absence of forcing and viscosity we obtain closed form solutions in terms of Jacobi elliptic functions. With three shells the model is integrable. In the case of many shells, we derive exact recursion relations for the amplitudes of the Jacobi functions relating the different shells and we obtain a Kolmogorov solution in the limit of infinitely many shells. For the special case of six and nine shells, these recursions relations are solved giving specific analytic solutions. Some of these solutions are stable whereas others are unstable. All our predictions are substantiated by numerical simulations of the GOY shell model. From these simulations we also identify cases where the models exhibits transitions to chaotic states lying on strange attractors or ergodic energy surfaces.Comment: 25 pages, 7 figure

    Mammal population densities at a global scale are higher in human‐modified areas

    Get PDF
    Global landscapes are changing due to human activities with consequences for both biodiversity and ecosystems. For single species, terrestrial mammal population densities have shown mixed responses to human pressure, with both increasing and decreasing densities reported in the literature. How the impacts of human activities on mammal populations translates into altered global density patterns remains unclear. Here we aim to disentangle the effect of human impacts on large‐scale patterns of mammal population densities using a global dataset of 6729 population density estimates for 468 mammal species (representing 59% and 44% of mammalian orders and families). We fitted a mixed effect model to explain the variation in density based on a 1‐degree resolution as a function of the human footprint index (HFI), a global proxy of direct and indirect human disturbances, while accounting for body mass, trophic level and primary productivity (normalized vegetation index; NDVI). We found a significant positive relationship between population density and HFI, where population densities were higher in areas with a higher HFI (e.g. agricultural or suburban areas – no populations were located in very high HFI urban areas) compared to areas with a low HFI (e.g. wilderness areas). We also tested the effect of the individual components of the HFI and still found a consistent positive effect. The relationships remained positive even across populations of the same species, although variability among species was high. Our results indicate shifts in mammal population densities in human modified landscapes, which is due to the combined effect of species filtering, increased resources and a possible reduction in competition and predation. Our study provides further evidence that macroecological patterns are being altered by human activities, where some species will benefit from these activities, while others will be negatively impacted or even extirpated
    corecore