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Intra-guild competition and its implications
for one of the biggest terrestrial predators,

Tyrannosaurus rex
Chris Carbone1,*, Samuel T. Turvey1 and Jon Bielby1,2

1Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK
2Department of Infectious Disease Epidemiology, Imperial College London, St. Mary’s Hospital,

Norfolk Place, London W2 1PG, UK

Identifying tradeoffs between hunting and scavenging in an ecological context is important for understanding

predatory guilds. In the past century, the feeding strategy of one of the largest and best-known terrestrial

carnivores, Tyrannosaurus rex, has been the subject of much debate: was it an active predator or an obligate

scavenger? Here we look at the feasibility of an adult T. rex being an obligate scavenger in the environmental

conditions of Late Cretaceous North America, given the size distributions of sympatric herbivorous

dinosaurs and likely competition with more abundant small-bodied theropods. We predict that nearly

50 per cent of herbivores would have been within a 55–85 kg range, and calculate based on expected encoun-

ter rates that carcasses from these individuals would have been quickly consumed by smaller theropods.

Larger carcasses would have been very rare and heavily competed for, making them an unreliable food

source. The potential carcass search rates of smaller theropods are predicted to be 14–60 times that of an

adult T. rex. Our results suggest that T. rex and other extremely large carnivorous dinosaurs would have

been unable to compete as obligate scavengers and would have primarily hunted large vertebrate prey, similar

to many large mammalian carnivores in modern-day ecosystems.

Keywords: Scavenging; hunting behaviour; scramble competition; Tyrannosaurus rex
1. INTRODUCTION
Scavenging behaviour is associated with a diverse range of

important ecological and behavioural processes including

kleptoparasitism [1], disease transmission [2], species dis-

tributions [3–5] and nutrient cycling [6], but despite its

importance it remains a poorly understood phenomenon

[7]. Most carnivorous species today rely on a combination

of hunting and scavenging [7,8], although some groups of

species subsist almost exclusively on scavenging [9].

Effective scavengers must possess high movement

speeds but low locomotion costs, and the ability to

detect carcasses over long distances in order to outcom-

pete other scavengers and predators [10]. These factors

explain why vultures are such highly successful obligate

scavengers, while sit-and-wait predators (e.g. viperid

snakes) are reliant almost exclusively on hunting [7].

However, many physical features that help species

scavenge successfully (e.g. powerful build; sharp teeth;

fast speed; good vision and sense of smell) are also

useful for hunting. As a result, it can be difficult to diag-

nose feeding strategies of species from their physical

characteristics alone, especially for extinct carnivores

known only from the fossil record [11–13].

In the past century, the feeding strategy of one of the

best known and largest terrestrial carnivores, Tyrannosaurus

rex, has been the subject of considerable debate and

attention (e.g. [14–20]). Proposed support for the species

being a primary or obligate scavenger includes its

disproportionately tiny forelimbs and apparently reduced
r for correspondence (chris.carbone@ioz.ac.uk).
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eyes [16], enlarged olfactory bulbs [21], and large body

size and upright stance as a possible adaptation for finding

carcasses, although the latter two traits may also have been

an advantage for locating live prey [15]. However, enlarged

olfactory bulbs may be associated with behaviours

unrelated to food acquisition [22,23], and the eyes of

T. rex are in fact large in both relative and absolute terms

[24]. The binocular vision, bite force and impact-resistant

teeth of T. rex suggest instead that it may have been better

adapted for an active predatory lifestyle [18,20,25,26].

Nearly all of the debate over the feeding ecology of

T. rex has focused on the interpretation of functional

morphology rather than on energetic or ecosystem-level

considerations. A recent attempt to determine the feasi-

bility of T. rex being an obligate scavenger addressed the

energetic costs of movement and the amount of meat

available from carcasses [17]. Based on reasonable

assumptions of energetic rates, travel speeds and carcass

detection ability, this study concluded that T. rex could

feasibly have survived as an obligate scavenger, although

energetically it might have been a marginal strategy.

However, as yet no analyses of the feeding ecology of

T. rex have investigated wider patterns of theropod and

other dinosaurian diversity in Late Cretaceous faunas

[27], in particular, the impacts of competition from

other sympatric carnivorous theropods, or the size distri-

bution of carcasses available to potential scavengers of

that period.

Most extant carnivore guilds contain a number of com-

peting predatory/scavenging species [28], and the Late

Cretaceous North American dinosaur fauna also con-

sisted of several small-bodied non-avian carnivorous
This journal is q 2011 The Royal Society
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Table 1. Species and body masses of carnivorous non-avian theropod dinosaurs of Late Cretaceous North America.

Midpoint taken when a range of body mass estimates is given in the literature. Richardoestesia is only known from jaws and
teeth; since maximum tooth size is slightly smaller than that of Saurornitholestes [33], we estimate a body mass of ca 20 kg for
this genus based on Saurornitholestes body mass estimates. Body mass estimates for Albertosaurus sarcophagus and T. rex taken
as mean of all measurements for adult individuals that had reached somatic maturity given in Erickson et al. [34].
Nanotyrannus has been interpreted as a possible juvenile Tyrannosaurus by some authors [35], but we provisionally retain it

here as a valid taxon following [27]. Mass categories and the estimated percentage that each size category contributes to the
total carnivore guild are also presented (figure 1).

species family mass (kg) mass categories, kg (with estimated %) reference

Dromaeosaurus albertensis Dromaeosauridae 16 20.6 (79.9%) [36]
Richardoestesia gilmorei Coelurosauria incertae sedis 20 see legend
Richardoestesia isosceles Coelurosauria incertae sedis 20 see legend
Saurornitholestes langstoni Dromaeosauridae 23 [37]

Velociraptor sp. Dromaeosauridae 24 [38]

Troodon formosus Troodontidae 50 58.3 (19.0%) [39]
Chirostenotes elegans Caenagnathidae 63 [40]
Chirostenotes pergracilis Caenagnathidae 63 [40]

Nanotyrannus lancensis Tyrannosauridae 1100 1123 (0.9%) [39]
Albertosaurus sarcophagus Tyrannosauridae 1146 [34]

Tyrannosaurus rex Tyrannosauridae 5347 5347 (0.1%) [34]
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theropods in the Tyrannosauridae, Oviraptorosauria

(Caenagnathidae), Deinonychosauria (Dromaeosauridae

and Troodontidae) and Coelurosauria incertae sedis

[27]. Although oviraptorosaurs and troodontids may not

have been obligate carnivores [29,30], many of these sym-

patric theropods were largely or completely carnivorous,

and there is evidence for both active predation and late-

stage carcass consumption (probable scavenging) by dro-

maeosaurs [31]. In modern-day ecosystems, carcasses are

typically a rare, widely dispersed and unpredictable

resource, and competition among scavengers is often

seen as a form of scramble competition [7]. If the same

conditions applied in Late Cretaceous ecosystems, T. rex

could have been in competition for resources with a

range of different-sized theropods, also including juvenile

and sub-adult T. rex individuals, which may have been

relatively abundant compared with adults [32]. In our

analysis, we focus on Late Cretaceous theropod species

weighing 16–20 kg and up to the size of T. rex. Our

lower size range was based on evidence from terrestrial

mammalian carnivore guilds, because species of this

weight range (e.g. wild dogs, jackals, hyenas) are extremely

effective hunter/scavengers [8] (table 1). If the smaller,

more abundant theropod species and T. rex age classes

were therefore also primarily hunters that scavenged

opportunistically, this might have placed extreme pressure

on the resources available from scavenging in the Late

Cretaceous theropod community.

Interpreting patterns of relative abundance is notor-

iously difficult from the fossil record, due to

taphonomic biases typically favouring the preservation

of large-bodied species [41]. Skeletons of small-bodied

Late Cretaceous dinosaurs are very rare and new species

continue to be discovered, whereas the remains of large-

bodied dinosaurs typically dominate Late Cretaceous

fossil deposits [38,42]. However, even though they are

recognized to have a much lower preservation potential,

the observed fossil abundance of small putatively carni-

vorous theropods (dromaeosaurs and troodontids) is

similar to that of tyrannosaurids in North American
Proc. R. Soc. B
Late Cretaceous deposits [42], and many of these depos-

its show a relatively high abundance of both small

theropods and small herbivorous dinosaurs (hypsilopho-

dontids and pachycephalosaurs) [43]. This suggests that

smaller carnivores and herbivores were proportionally

much more abundant than tyrannosaurids in Late Cretac-

eous ecosystems. The abundance of small species within

dinosaur guilds would be supplemented by the presence

of earlier life stages of larger species. Body mass abun-

dance patterns in fishes, another vertebrate group where

individuals are independent before adulthood, are similar

to those found in mammals when one considers the over-

all size classes rather than species weight classes [44];

assumptions about relationships between abundance

and size at a faunal level are therefore likely to be robust

to changes in the relative abundance of some of the smal-

ler species.

In this paper, we explore the potential competitive

ability of T. rex as an obligate scavenger. We take into

account the presence of other carnivorous theropod indi-

viduals in Late Cretaceous ecosystems, and the estimated

spatial distribution of carcasses of different herbivorous

dinosaur species that would be available for scavengers.

We make the assumption that, by analogy with vertebrate

assemblages in modern-day terrestrial ecosystems, many

predators are also opportunistic scavengers, so that

there are more potential consumers of carcasses than car-

casses available for these predatory guilds. We assess the

likelihood that adult T. rex could have been an obligate

scavenger based on expected carcass encounter rates for

this species compared with those for sympatric smaller

theropod dinosaurs. We follow Ruxton & Houston [17]

in drawing explicitly on modern ecological analogues,

by basing our analysis on the production rate of large car-

casses estimated from the terrestrial large mammal

community of the well-studied modern-day Serengeti

ecosystem [9]. We also base our predictions of relative

abundance and travel speed on well-established body

size abundance and speed relationships found in

terrestrial mammals [45–47].

http://rspb.royalsocietypublishing.org/
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Figure 1. Body mass categories and predicted relative abundances of (a) non-avian carnivorous theropods and (b) herbivorous

dinosaurs found in Late Cretaceous North America. Relative abundances were estimated from equations derived from
abundance–mass relationships found in extant mammalian carnivores and herbivores [47,60] and from body masses for
sympatric dinosaurs from the Late Cretaceous T. rex community (tables 1 and 2).

Table 2. Species and body masses of herbivorous dinosaurs of Late Cretaceous North America. Ornithischian and sauropod

body masses taken from the midpoint of genus-level estimates in Peczkis [48]; ornithomimosaur body masses taken from
Christiansen [37]. Species diversity from Weishampel et al. [27] revised following [49–52]; Dyslocosaurus polyonychius also
excluded as the suggested Late Cretaceous occurrence of this species is probably erroneous [53]. Mass categories and the
estimated percentage each category contributes to the total herbivore guild are based on herbivore mass–abundance

relationships found in extant mammalian herbivores (see also figure 1).

species family body mass (kg) mass categories, kg (with estimated %)

Parksosaurus warreni Hypsilophodontidae 55 75 (49.3%)

Prenocephale edmontonensis Pachycephalosauridae 85

Ornithomimus velox Ornithomimosauridae 155 216 (36.8%)
Struthiomimus sp. Ornithomimosauridae 175
Thescelosaurus garbanii Hypsilophodontidae 250

Thescelosaurus neglectus Hypsilophodontidae 250
Leptoceratops gracilis Leptoceratopsidae 250

Montanoceratops sp. Leptoceratopsidae 550 700 (6.0%)
Pachycephalosaurus wyomingensis Pachycephalosauridae 850

Edmontosaurus annectens Hadrosauridae 2500 2500 (6.7%)
Edmontosaurus regalis Hadrosauridae 2500
Edmontosaurus saskatchewanensis Hadrosauridae 2500
Lambeosaurus sp. Hadrosauridae 2500

Parasaurolophus walkeri Hadrosauridae 2500
Edmontonia rugosidens Nodosauridae 2500

Ankylosaurus magniventris Ankylosauridae 5500 5000 (0.6%)

Triceratops horridus Ceratopsidae 8500 8500 (0.4%)

Alamosaurus sanjuanensis Saltasauridae 25 000 25 000 (0.2%)

Scavenging versus hunting in T. rex C. Carbone et al. 3
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2. METHODS
Lists of non-avian dinosaur species that were stratigraphically

coeval and geographically sympatric with T. rex and which

could potentially act as competitors or prey were collected

from records of Late Cretaceous (late Campanian to late

Maastrichtian) fossil formations in North America [27].

Only those dinosaur taxa that were positively identified to

species or genus level from formations that also contained

tyrannosaurid fossils identified as T. rex were categorized in

our study as being sympatric; all provisional or tentative

species or genus identifications were interpreted as being
Proc. R. Soc. B
definite identifications for the purposes of analysis. Body

mass estimates for these dinosaurs were obtained from the

scientific literature (tables 1 and 2). We exclude the herbivor-

ous ornithomimosaurs [54] from our analyses of carnivorous

theropods but include caenagnathid oviraptorosaurs and

troodontids, following earlier studies [55–57]. Although

there may have been minor variations in dinosaur faunal

composition across the geographical range of T. rex during

the Late Cretaceous (e.g. titanosaurid sauropods were

restricted to the southwestern United States [27]), our

species list is treated as representing a consistent sympatric

http://rspb.royalsocietypublishing.org/
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faunal unit across this region for the purposes of analysis.

A slightly different species list is also available on the

Paleobiology Database (http://paleodb.org/cgi-bin/bridge.pl).

However, as our analysis of theropod performance focuses

on a comparison between the largest and smallest theropod

size classes (see below), it is robust to such minor changes

in faunal composition.

We based our estimates of carcass production on data

from the Serengeti ecosystem [17]. We assume that this is a

valid ecological comparison, because although ecosystems

in the Late Cretaceous may have been more productive and

contained more large-bodied species than terrestrial mam-

malian systems today, they would also be expected to

contain a higher abundance of predators, and the fossil

record of large-bodied species contains similar predator–

prey ratios to those recorded in modern-day ecosystems [58].

Our approach relies on the use of allometric equations to

estimate how factors such as abundance and search capacity

vary with body mass. Manybiological characteristics of animals

are related to body mass and can be described with power

equations taking the form of Y ¼ a �Mb, where a is a constant,

M is mass (kg) and b represents the allometric exponent, which

influences the relative change in the value Y with changes in

body mass. These equations are commonly used in multi-

species studies on the influence of body mass on species

characteristics [59].

We assume that population densities of herbivorous and

theropod dinosaurs, Nh and Nt (number of individuals km22),

are related to the following power equations:

Nh ¼ c�Md
h

and

Nt ¼ e�M f
t

where Mh and Mt are in kilograms, c and e are constants

corresponding to the number of 1 kg animals km22, and d

and f are scaling factors.

To estimate the relative numbers of Late Cretaceous

herbivorous dinosaurs, we used values of c ¼ 100 and

d ¼ 20.75, similar to the values estimated from data on

herbivorous mammal abundance [45]. Estimates of carni-

vorous theropod dinosaur abundances were derived from

mammalian carnivore data [47], where e ¼ 1.97 and

f ¼ 20.88. For the purposes of illustration, herbivorous

and carnivorous dinosaur species, including different age

classes of the larger species, were then grouped into seven

and four size classes, respectively, corresponding to the

natural body size groupings shown by the data (tables 1,

2 and figure 1).

To explore how the presence of sympatric competing ther-

opods affects the likelihood of adult T. rex being an obligate

scavenger, we used estimates of carcass encounter rate

following the model proposed by Ruxton & Houston [17].

Our approach, however, differs from Ruxton & Houston in

that we focus on estimating relative encounter rates of thero-

pod scavengers accounting for size-dependent differences in

estimated population density, travel speed and search

capacity in relation to the size and likely distribution of avail-

able carcasses. Also unlike Ruxton & Houston, we do not

explicitly attempt to estimate intake rates of a scavenging

T. rex but focus our analysis on the relative search areas of

an adult T. rex compared with other competing species and

age classes. Following Ruxton & Houston, we assumed that
Proc. R. Soc. B
the forager moves along a path where the search area is

defined by the speed St (m s21) and detection distance Dt.

Because we also need to estimate how these factors vary

with body mass, we used the following allometric equations:

St ¼ g �Mh
t ðin km d�1Þ;

where g and h represent the constant and exponent for

speed, respectively, and:

Dt ¼ j �Mk
t ðin kmÞ;

where j and k represent the constant and exponent for

detection range, respectively.

In order to explore the potential impact of scavenging on

carcasses, we calculated the total potential impact of the

populations of different theropod species on carcass feeding

by multiplying estimated population sizes by individual

search rates (see above).

To estimate the population search rate NAtot (km2 d21)

would be:

NAtot ¼ Nt � St � 2Dt;

which expands to:

¼ eM f
t � gMh

t � 2jMk
t

¼ 2egjM
ð fþhþkÞ:
t

The constants e, g and j in this equation do not affect the

relative impacts of scavenging by different theropods, but the

scaling exponents have a critical influence on these relative

values. Therefore, in order to compare these scanning rates

we do not need to know the absolute values of the constants,

which is useful as we do not have a good understanding of the

absolute values of abundance, speed and detection range for

any dinosaur species.

We initially chose variables for the constants and expo-

nents to match Ruxton & Houston’s [17] predictions for

T. rex (table 3, scenario 1), but also used alternative values

based on more extreme assumptions about relative differ-

ences between theropod species (table 3, scenarios 2–5).

In scenario 1, we set the speed constant g ¼ 11.9 and the

speed scaling factor h ¼ 0.05. We set the detection range

constant j ¼ 0.034 and the detection range scaling factor

k ¼ 0.1. These values predict a daily distance for an individ-

ual T. rex of 18.3 km and a detection distance of 80 m

(approximately the values estimated in [17]), compared

with 13.8 km d21 and a 50 m detection range for a 20 kg

theropod. We increased the exponents for the scaling of

both speed and/or detection range with mass (scenarios 2–

4) to increase the relative speed and detection distance for

T. rex. Here we used combinations of values of 0.16 and

0.25 for the speed and detection range scaling factors h

and k, respectively (broadly similar to values described

in scaling studies on mammals [46,60]; table 3). For the

purposes of illustration, we calculated an extreme case (scen-

ario 5) where T. rex performs at the same level as smaller

theropod species, with scaling factor values h ¼ 0.35 and

k ¼ 0.54.
3. RESULTS
Based on size–abundance relationships found in modern-

day herbivorous mammals [45], we predict that just under

50 per cent of herbivorous carcasses in the T. rex com-

munity would have been in the 55–85 kg size range

http://paleodb.org/cgi-bin/bridge.pl
http://paleodb.org/cgi-bin/bridge.pl
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Table 3. Sensitivity analysis of the impact of varying speed and detection range for ‘small’ (a hypothetical 20 kg species) and

‘large’ (T. rex) theropod dinosaur populations. Scenario 5 shows extreme scaling where T. rex-sized theropods would be
predicted to be able to cover the same areas as all other theropod species. In this case the constant sc was set to 6.6 to reduce
the km d21 estimate for T. rex.

speed detection

theropod mass (kg) km d21 St (km h21) Dt (km) ratioascenario const. g exp. h const. j exp. k

1 11.9 0.05 0.034 0.1 20 13.8 1.2 0.05 60.1
5347 18.3 1.5 0.08

2 11.9 0.16 0.034 0.1 20 19.2 1.6 0.05 32.5
5347 47.0 3.9 0.08

3 11.9 0.05 0.034 0.25 20 13.8 1.2 0.07 26
5347 18.3 1.5 0.29

4 11.9 0.16 0.034 0.25 20 19.2 1.6 0.07 14

5347 47.0 3.9 0.29
5 6.6 0.35 0.034 0.54 20 18.8 1.6 0.17 1.0

5347 133.2 11.1 3.50

aRatio of the daily area covered by members of a species of 20 kg over that predicted for the T. rex population, based on an estimated
density of 177.4 per 1000 km2 for the small species and 2.9 per 1000 km2 for T. rex (see text for details).

Scavenging versus hunting in T. rex C. Carbone et al. 5
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(figure 1). A productive modern-day ecosystem such as

the Serengeti generates 4.38 kg of carcasses km22 d21

[9]. If we can assume that levels of carcass abundance

were similar in Mesozoic terrestrial ecosystems, a sub-

stantial number of dinosaur carcasses would therefore

have been present in Late Cretaceous North America,

enough to sustain an individual adult T. rex. However, it

becomes clear that finding these carcasses becomes a pro-

blem if we estimate the distributions of different-sized

carcasses given this predicted rate of supply. Using the

simplified assumption that all size classes of species pro-

duce carcasses at the same rate [47], we can easily

calculate an expected distribution based on the Serengeti

production rate as an even fraction of the number of

herbivorous dinosaur size classes. If every carcass lasted

7 days before becoming consumed (or 14 days at 50%

of the original body mass), most carcasses would be

very widely dispersed indeed: on average there would be

just one 75 kg carcass every 17 km2, one 700 kg carcass

every 160 km2, and one 5 tonne carcass every

1000 km2, with a 25 tonne carcass every 5000 km2.

Clearly, these carcasses would be difficult for individual

scavengers to find without travelling great distances.

Based on Ruxton & Houston’s calculations [17], we

expect an adult T. rex to have covered just under 3 km2

a day (18.3 km daily distance � 2 � 0.08 km detection

distance). Using our estimates of carcass distributions

described above, we predict that T. rex would have been

able to find a 75 kg carcass on average in just under 6

days, and a 700 kg carcass in approximately 55 days; on

average, it would have had to search for over a year to

find a 5 tonne carcass and five times that to find a

25 ton carcass (figure 2). The potential absence of titano-

saurid sauropods, the largest size class of herbivorous

dinosaurs, from part of the geographical range of T. rex

[27] therefore has little bearing on the availability of

carcasses in Late Cretaceous ecosystems.

How might populations of other smaller carnivorous

theropod dinosaurs have impacted these carcasses

during the time T. rex spent searching for them? Given

the much higher predicted relative abundances of smaller

theropod species and age classes compared with an adult
Proc. R. Soc. B
T. rex, one might expect individuals of these species

to have had a considerable effect on the amount of meat

supplied by carcasses. In figure 2, we show the average

expected numbers of theropod dinosaurs that would

arrive at a carcass before an adult T. rex could reach it.

The smaller, more abundant species would be expec-

ted to take less time to locate and arrive at a carcass.

For a 75 kg carcass, we predict that on average five

Dromaeosaurus-sized individuals and one Troodon-sized

individual would already have arrived first, and would

be expected to quickly consume most or all of the

carcass. Larger carcasses would have attracted more

theropods, and again would probably have been fully con-

sumed before the arrival of T. rex. Overall for the T. rex

community, we predict that the smallest carnivorous thero-

pods collectively would have had carcass search rates over

60 times higher than adult T. rex under a model of modest

scaling exponents for travel speed and detection range

(i.e. small differences between theropods), and between

26–33 times higher given moderate scaling exponents

(table 3). Only if we assume extreme scaling exponents,

where an adult T. rex travelled over 130 km d21 and had a

detection range of around 3.5 km, could it have had the

same search rate as smaller theropod species (table 3).

However, even under these extreme and implausible par-

ameters, competition would have been intense across the

Late Cretaceous theropod guild. Although we do not

show these calculations, if an adult T. rex had been even

larger than our body mass estimate and instead nearer to

7 tonnes [34] following alternative estimates, we would

expect approximately 30–73-fold lower search rates in

this species given conditions in scenarios 1–3.
4. DISCUSSION
Our results highlight the importance of taking both intra-

specific and interspecific competition and the distribution

of food resources into account when investigating the

ecological viability of alternative carnivore foraging

strategies. Ultimately, the nutritional ecology of a carni-

vore will be determined by the costs and benefits of

different available strategies. Most terrestrial mammalian

http://rspb.royalsocietypublishing.org/
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carnivores are primarily hunters, but scavenge opportu-

nistically when carcasses become available [7]. A heavy

reliance on scavenging will only be viable if this strategy

can provide a reliable source of food. While our analysis

does not examine these costs/benefits in relation to hunt-

ing at an individual level, we clearly show that given the

distribution of carcasses and the potential for competition

with other members of the carnivorous theropod guild, it

is extremely unlikely that an adult T. rex could use scaven-

ging as a long-term sustainable foraging strategy. The

simple reason for this lies in the predicted overwhelming

abundance of smaller-bodied competing theropods, with

the smallest of these in the 16–25 kg range estimated to

represent approximately 80 per cent of individuals in

the guild (table 2).

In modern-day carnivore guilds, groups of African wild

dogs (Lycaon pictus), wolves (Canis lupus) and spotted

hyena (Crocuta crocuta) weighing 20–60 kg can reduce a

70þ kg carcass to scraps of skin and bone extremely

rapidly, certainly in under an hour [61,62]. If similar-

sized carnivorous theropods had the same ecological

impact in the Late Cretaceous, this would have severely

reduced the availability of the most common carcass

size available to larger carnivorous species. Although a

fully grown T. rex, being such a large carnivore, may

have dominated carcasses once it had arrived [63,64],

there would have been a limited number of carcasses per-

sisting in the environment to support such a giant obligate

scavenger. Even without the impact of small theropods,

predicted travel speeds and detection ranges indicate

that carcasses would have rotted by the time an adult

T. rex was typically able to find them. Furthermore,

whereas our analysis has only considered potential dino-

saur competitors, T. rex may also have competed with

other species such as giant azhdarchid pterosaurs for

access to carcasses [12,65], suggesting that Late Cretac-

eous North America would have been even less likely to

support a giant obligate terrestrial scavenger than we

have predicted. Decomposers would also have played
Proc. R. Soc. B
their part in further reducing the amount of meat

available to vertebrate scavengers [7]. In addition,

our analyses made the conservative assumption that

theropod speed increases with size. Recent studies

on theropod locomotion, however, suggest that smaller

species may in fact have been faster and more mobile

[66,67]. This is consistent with patterns of home range

size in modern carnivores, where the largest home

ranges are found in the intermediate body size range

[68]. If movement rates of smaller species were in fact

higher than we have assumed, the difference in search

rates would be even more extreme.

The question of whether dinosaurs were endothermic

or ectothermic remains one of the great unresolved

controversies of palaeontology, and has important impli-

cations for reconstructing aspects of dinosaurian trophic

ecology such as metabolic requirements and predator :

prey ratios [69–71]. Our comparison of the search rates

of theropod dinosaurs is sensitive to changes in relative

abundance, speed of movement and detection distances.

While these variables would be affected by metabolic

rate, our main conclusions regarding competition

between theropods would not be affected by their

thermoregulatory status if we assume that all theropods

in the T. rex community had similar metabolic rates, a

plausible assumption following several lines of evidence

(e.g. phylogeny, shared possession of feathers or proto-

feathers, bipedal stance [27,70]). If theropods were

ectotherms, we would expect T. rex to be able to tolerate

longer periods of fasting, but we might also expect it to

move more slowly and have a lower search rate [17]. We

might expect ectothermic theropods to obtain higher den-

sities for a given density of prey/carcasses, but this would

also lead to higher levels of competition for each carcass.

These tradeoffs therefore suggest that our conclusions

about the trophic status of T. rex should hold true whether

it was endothermic or ectothermic.

In a wider ecological context, it should not be surpris-

ing that a fully grown T. rex cannot be realistically

http://rspb.royalsocietypublishing.org/
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interpreted as an obligate scavenger. Large-bodied thero-

pods (e.g. neoceratosaurs, carnosaurs, megalosaurs,

tyrannosauroids) are characteristic members of all

well-studied diverse Jurassic and Cretaceous dinosaur

assemblages, and almost all of these species other than

T. rex have been interpreted uncontroversially as active

terrestrial predators [24]. The only large-bodied thero-

pods that probably had a markedly different nutritional

ecology are the fish-eating spinosaurs, which unlike

T. rex have been reconstructed on the basis of several inde-

pendent lines of evidence (functional morphology, isotope

signatures and stomach contents [72–74]). Several Juras-

sic and Cretaceous predator guilds (e.g. Morrison

Formation, Bahariya Formation) contained multiple

lineages of extremely large sympatric predatory theropods

[24,75], for which direct competition for prey must have

been mitigated by morphologically or ecologically

mediated niche partitioning [56]. In contrast, tyrannosaur-

ids are the only large-bodied theropods in Late Cretaceous

North America, with T. rex as the only giant carnivore (see

[34] for tyrannosaurid body masses and growth rates).

Since the T. rex community also contained a wide range

of large-bodied potential prey species, it can be considered

extremely unlikely on comparative ecological grounds that

this system for some reason lacked a similar theropod

‘super-predator’.

Many extant mammalian carnivores feed in groups,

especially in open and highly competitive ecosystems,

and recent work on Pleistocene carnivores suggests that

sociality may make species more effective at defending

scavenged carcasses from competitors [64,76]. If intra-

guild competition was similarly high in Late Cretaceous

terrestrial ecosystems, we might also expect selection for

social grouping behaviour in carnivorous theropods.

Interestingly, although reconstructing social behaviour

for extinct species in the fossil record is an extremely

difficult process, dromaeosaurs have often been inter-

preted as social carnivores (‘pack hunters’) on the basis

of Deinonychus–Tenontosaurus fossil assemblages [77]

(although see [78]), and there is also some taphonomic

evidence to suggest gregarious behaviour in the small

tyrannosaurid Albertosaurus [79].

What can our analysis tell us about other aspects of the

predatory behaviour of T. rex and other extremely large

theropods? Clearly, T. rex would have been able to domi-

nate almost all other terrestrial predators at any time or

any place. However, given its large mass and the fact

that it would have been vastly outnumbered by smaller

theropods, it was probably a poor competitor in indirect

scramble competition. We have evaluated the potential

impact of intra- and interspecific competition between

sympatric theropods on scavenging opportunities for

T. rex, but similar arguments could also be applied to its

ability to find hatchling or juvenile dinosaurs or other

sources of food if these had an unpredictable and ephem-

eral distribution, even though these are sometimes

interpreted as possible specialist tyrannosaurid prey

items [80]. Given its physical dominance, being one of

the largest known theropods [36], T. rex would have

been better able to compete for more predictable food

resources, and as a large prey specialist it would have

had a unique position in its guild at being able to effec-

tively hunt herbivorous dinosaurs that were far larger

than would be available to other theropod species.
Proc. R. Soc. B
Indeed, although pack hunting may have allowed dro-

maeosaurs to target larger prey species, taphonomic

evidence suggests that small Cretaceous deinonychosaur-

ian theropods probably hunted relatively small-bodied

herbivorous dinosaurs such as basal neoceratopsians or

hypsilophodontids, or dinosaur hatchlings [31,57,77],

rather than the larger hadrosaurs, neoceratopsians or tita-

nosaurs. As an active large prey specialist, feeding on

herbivores of similar or greater mass, T. rex would have

had feeding habits consistent with prey size selection pat-

terns found in extant mammalian carnivores [81,82]. We

propose that this is the most likely feeding strategy for

T. rex. Future research into the energetic and

behavioural constraints on this extreme giant predator

might also help to better understand the evolutionary

constraints on carnivory.
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