8 research outputs found
Confirmation of involvement of new variants at CDKN2A/B in pediatric acute lymphoblastic leukemia susceptibility in the Spanish population
The locus CDKN2A/B (9p21.3), which comprises the tumor suppressors genes CDKN2A and CDKN2B and the long noncoding RNA (lncRNA) known as ANRIL (or CDKN2B-AS), was associated with childhood acute lymphoblastic leukemia (ALL) susceptibility in several genome wide association studies (GWAS). However, the variants associated in the diverse studies were different. Recently, new and independent SNPs deregulating the locus function were also identified in association with ALL risk. This diversity in the results may be explained because different variants in each population could alter CDKN2A/B locus function through diverse mechanisms. Therefore, the aim of this study was to determine whether the annotated risk variants in the CDKN2A/B locus affect the susceptibility of B cell precursor ALL (B-ALL) in our Spanish population and explore if other SNPs altering additional regulatory mechanisms could be also involved. We analyzed the four SNPs proposed by GWAs and two additional SNPs in miRNA binding sites in 217 pediatric patients with B-ALL and 330 healthy controls. The SNPs rs2811712, rs3731249, rs3217992 and rs2811709 were associated with B-ALL susceptibility in our Spanish population. ALL subtypes analyses showed that rs2811712 was associated with B-hyperdiploid ALL. These results provide evidence for the influence of genetic variants at CDKN2A/B locus with the risk of developing BALL.This study was funded by the Basque Government (IT661-13, IT989-16), UPV/EHU (UFI11/35). AGC was supported by a pre-doctoral grant from the Basque Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Involvement of SNPs in miR-3117 and miR-3689d2 in Childhood Acute Lymphoblastic Leukemia Risk
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Numerous studies have shown that microRNAs (miRNAs) could play a role in this disease. Nowadays, more than 2500 miRNAs have been described, that regulate more than 50% of genes, including those involved in B-cell maturation, differentiation and proliferation. Genetic variants in miRNAs can alter their own levels or function, affecting their target gene expression, and then, may affect ALL risk. Therefore, the aim of this study was to determine the role of miRNA genetic variants in B-ALL susceptibility. We analyzed all variants in pre-miRNAs (MAF > 1%) in two independent cohorts from Spain and Slovenia and inferred their functional effect by in silico analysis. SNPs rs12402181 in miR-3117 and rs62571442 in miR-3689d2 were associated with ALL risk in both cohorts, possibly through their effect on MAPK signalling pathway. These SNPs could be novel markers for ALL susceptibility
Confirmation of involvement of new variants at CDKN2A/B in pediatric acute lymphoblastic leukemia susceptibility in the Spanish population
<div><p>The locus CDKN2A/B (9p21.3), which comprises the tumor suppressors genes <i>CDKN2A</i> and <i>CDKN2B</i> and the long noncoding RNA (lncRNA) known as <i>ANRIL</i> (or CDKN2B-AS), was associated with childhood acute lymphoblastic leukemia (ALL) susceptibility in several genome wide association studies (GWAS). However, the variants associated in the diverse studies were different. Recently, new and independent SNPs deregulating the locus function were also identified in association with ALL risk. This diversity in the results may be explained because different variants in each population could alter CDKN2A/B locus function through diverse mechanisms. Therefore, the aim of this study was to determine whether the annotated risk variants in the CDKN2A/B locus affect the susceptibility of B cell precursor ALL (B-ALL) in our Spanish population and explore if other SNPs altering additional regulatory mechanisms could be also involved. We analyzed the four SNPs proposed by GWAs and two additional SNPs in miRNA binding sites in 217 pediatric patients with B-ALL and 330 healthy controls. The SNPs rs2811712, rs3731249, rs3217992 and rs2811709 were associated with B-ALL susceptibility in our Spanish population. ALL subtypes analyses showed that rs2811712 was associated with B-hyperdiploid ALL. These results provide evidence for the influence of genetic variants at CDKN2A/B locus with the risk of developing B-ALL.</p></div
Noncoding RNA-related polymorphisms in pediatric acute lymphoblastic leukemia susceptibility
Background: Evidence for an inherited genetic risk for pediatric acute lymphoblastic leukemia has been provided in several studies. Most of them focused on coding regions. However, those regions represent only 1.5% of the entire genome. In acute lymphoblastic leukemia (ALL), it has been suggested that the expression of microRNAs (miRNAs) is dysregulated, which suggests that they may have a role in ALL risk. Changes in miRNA function may occur through single-nucleotide polymorphisms (SNPs). Therefore, the aim of this study was to evaluate whether polymorphisms in pre-miRNAs, and/or miRNA-processing genes, contribute to a predisposition for childhood ALL.
Methods: In this study, we analyzed 118 SNPs in pre-miRNAs and miRNA-processing genes in 213 B-cell ALL patients and 387 controls.
Results: We found 11 SNPs significantly associated with ALL susceptibility. These included three SNPs present in miRNA genes (miR-612, miR-499, and miR-449b) and eight SNPs present in six miRNA biogenesis pathway genes (TNRC6B, DROSHA, DGCR8, EIF2C1, CNOT1, and CNOT6). Among the 118 SNPs analyzed, rs12803915 in mir-612 and rs3746444 in mir-499 exhibited a more significant association, with a P value <0.01.
Conclusion: The results of this study indicate that SNP rs12803915 located in pre-mir-612, and SNP rs3746444 located in pre-mir-499, may represent novel markers of B-cell ALL susceptibility.A.G.-C. was supported by a predoctoral grant from the Gangoiti Barrera Foundation, Bilbao, Spain. E.L.-L. was supported by a predoctoral grant of the Basque Government and “Fellowship for recent doctors until their integration in postdoctoral programs” by the Investigation Vice-rector’s office of the University of Basque Country (UPV/EHU). This project was supported by Spanish Thematic Network of Cooperative Research in Cancer (RD/06/0020/0048), the Basque Government (IT661-13, S-PE12UN060), and UPV/EHU (UFI11/35)