814 research outputs found

    Альтернативные убиквитин-конъюгирующие ферменты Е2 регулируют эндоцитоз рецептора интерферона-1

    Get PDF
    Ubiquitination of signaling receptors triggers their endocytosis to restrict the extent of cell signaling. Type 1 interferon (IFN1) eliminates its receptor from cell surface via stimulating the ubiquitination of its IFNAR1 chain. While it was suggested that this ubiquitination aids IFNAR1 internalization via relieving a steric hindrance of a linear motif within IFNAR1 from the endocytic machinery, the mechanisms involved remain poorly understood. Here we describe a specific role for two disparate ubiquitin acceptor sites within this receptor. These sites, Lys501 and Lys525 / 526, exhibit a preference for polyubiquitination via either Lys63- or Lys48‑linked chains (K63‑Ub and K48‑Ub, respectively). Whereas the SCFβTrcp E3 ubiquitin ligase controls either type of ubiquitination-dependent IFNAR1 endocytosis, the specificity of these processes is determined by two different E2 ubiquitin conjugating enzymes, Ubc13 and Cdc34. These enzymes can be directly used by SCFβTrcp E3 ubiquitin ligase to generate either K63‑Ub or K48‑Ub in vitro. Ubc13 is involved in IFNAR1 endocytosis driven by the K63‑Ub modification of Lys501, whereas the K48‑Ub-specific Cdc34 affects receptor endocytosis via ubiquitin conjugation that occurs onLys525 / 526. Both types of linkages combine to maximize IFNAR1 endocytosis otherwise suppressed by unfavorable conformation dependent on the presence of a conserved Pro470 within the intracellular domain of IFNAR1. We propose a model where alternate utilization of both E2s to assemble diverse polyubiquitin linkages cooperates to achieve IFNAR1 intracellular domain conformations and spatial arrangements that favor a maximal rate of receptor endocytosis.Убиквитинирование сигнальных рецепторов, вызывающее их эндоцитоз, направлено на подавление передачи сигнала. Деградация рецептора интерферона 1‑го типа (IFN1) на поверхности клетки осуществляется путем убиквитинирования комплекса лиганда с рецептором (IFNAR1). Принято считать, что убиквитинирование способствует взаимодействию между линейным мотивом комплекса IFNAR1 и соответствующими структурами системы эндоцитоза, однако механизм этого процесса остается неясным. В данной работе изучена роль двух различных акцепторных сайтов убиквитина на этом рецепторе. Предпочтительное полиубиквитинирование сайтов Lys501 и Lys525 / 526 обеспечивается посредством Lys63- или Lys48‑связанных цепей (K63‑Ub и K48‑Ub соответственно). Несмотря на то, что убиквитинлигаза SCFβTrcp E3 контролирует оба типа убиквитин-зависимого эндоцитоза IFNAR1, специфика этих процессов определяется двумя различными убиквитин-конъюгирующими ферментами E2 – Ubc13 и Cdc34. Эти ферменты могут непосредственно использоваться убиквитинлигазой SCFβTrcp E3 для создания K63‑Ub или K48‑Ub in vitro. Ubc13 принимает участие в эндоцитозе IFNAR1 путем модификации Lys501 с помощью K63‑Ub, в то время как K48‑Ub-специфичный Cdc34 изменяет эндоцитоз посредством конъюгации с убиквитином, которая происходит на Lys525 / 526. Совместный эффект обоих воздействий максимально стимулирует эндоцитоз IFNAR1, который обычно ингибирован конформационным несоответствием, связанным с наличием консервативного Pro470 во внутриклеточном домене IFNAR1. Мы предлагаем модель, в которой эффекты обоих ферментов E2 объединяют отдельные составляющие системы полиубиквитинирования, обеспечивая им взаимодействие с внутриклеточным доменом IFNAR1 при оптимальном пространственном расположении, что дает наибольшую скорость эндоцитоза рецептора

    Endocytosis of the IFNAR1 chain of Type 1 interferon receptor is regulated by diverse E2 ubiquitin conjugation enzymes

    Get PDF
    Ubiquitination of signaling receptors triggers their endocytosis to restrict the extent of cell signaling. Type 1 interferon (IFN1) eliminates its receptor from cell surface via stimulating the ubiquitination of its IFNAR1 chain. While it was suggested that this ubiquitination aids IFNAR1internalization via relieving a steric hindrance of a linear motif within IFNAR1 from the endocytic machinery, the mechanisms involved remain poorly understood. Here we describe a specific role for two disparate ubiquitin acceptor sites within this receptor. These sites, Lys501 and Lys525 / 526, exhibit a preference for polyubiquitination via either Lys63- or Lys48‑linked chains (K63‑Ub and K48‑Ub, respectively). Whereas the SCFβTrcp E3 ubiquitin ligase controls either type of ubiquitination-dependent IFNAR1 endocytosis, the specificity of these processes is determined by two different E2 ubiquitin conjugating enzymes, Ubc13 and Cdc34. These enzymes can be directly used by SCFβTrcp E3 ubiquitin ligase to generate either K63‑Ub or K48‑Ub in vitro. Ubc13 is involved in IFNAR1 endocytosis driven by the K63‑Ub modification of Lys501, whereas the K48‑Ub-specific Cdc34 affects receptor endocytosis via ubiquitin conjugation that occurs on Lys525 / 526. Both types of linkages combine to maximize IFNAR1 endocytosis otherwise suppressed by unfavorable conformation dependent on the presence of a conserved Pro470 within the intracellular domain of IFNAR1. We propose a model where alternate utilization of both E2s to assemble diverse polyubiquitin linkages cooperates to achieve IFNAR1 intracellular domain conformations and spatial arrangements that favor a maximal rate of receptor endocytosis

    An alu-based phylogeny of gibbons (hylobatidae)

    Get PDF
    Gibbons (Hylobatidae) are small, arboreal apes indigenous to Southeast Asia that diverged from other apes ∼15-18 Ma. Extant lineages radiated rapidly 6-10 Ma and are organized into four genera (Hylobates, Hoolock, Symphalangus, and Nomascus) consisting of 12-19 species. The use of short interspersed elements (SINEs) as phylogenetic markers has seen recent popularity due to several desirable characteristics: the ancestral state of a locus is known to be the absence of an element, rare potentially homoplasious events are relatively easy to resolve, and samples can be quickly and inexpensively genotyped. During radiation of primates, one particular family of SINEs, the Alu family, has proliferated in primate genomes. Nomascus leucogenys (northern white-cheeked gibbon) sequences were analyzed for repetitive content with RepeatMasker using a custom library. The sequences containing Alu elements identified as members of a gibbon-specific subfamily were then compared with orthologous positions in other primate genomes. A primate phylogenetic panel consisting of 18 primate species, including 13 gibbon species representing all four extant genera, was assayed for all loci, and a total of 125 gibbon-specific Alu insertions were identified. The resulting amplification patterns were used to generate a phylogenetic tree. We demonstrate significant support for Symphalangus as the most basal lineage within the family. Our findings also place Nomascus as a derived lineage, sister to Hoolock, with the Nomascus-Hoolock clade sister to Hylobates. Further, our analysis groups N. leucogenys and Nomascus siki as sister taxa to the exclusion of the other Nomascus species assayed. This study represents the first use of SINEs to determine the genus level phylogenetic relationships within the family Hylobatidae. These relationships have been resolved with robust support at most internal nodes, demonstrating the utility of SINE-based phylogenetic analysis. We postulate that hybridization and rapid radiation may have contributed to the complex and contradictory findings of the previous studies. Our findings will aid in the conservation of these threatened primates and inform future studies of the biogeographical history and distribution of modern gibbon species. © 2012 The Author

    Urinary Tract Stones and Osteoporosis: Findings From the Women's Health Initiative

    Full text link
    Kidney and bladder stones (urinary tract stones) and osteoporosis are prevalent, serious conditions for postmenopausal women. Men with kidney stones are at increased risk of osteoporosis; however, the relationship of urinary tract stones to osteoporosis in postmenopausal women has not been established. The purpose of this study was to determine whether urinary tract stones are an independent risk factor for changes in bone mineral density (BMD) and incident fractures in women in the Women's Health Initiative (WHI). Data were obtained from 150,689 women in the Observational Study and Clinical Trials of the WHI with information on urinary tract stones status: 9856 of these women reported urinary tract stones at baseline and/or incident urinary tract stones during follow‐up. Cox regression models were used to determine the association of urinary tract stones with incident fractures and linear mixed models were used to investigate the relationship of urinary tract stones with changes in BMD that occurred during WHI. Follow‐up was over an average of 8 years. Models were adjusted for demographic and clinical factors, medication use, and dietary histories. In unadjusted models there was a significant association of urinary tract stones with incident total fractures (HR 1.10; 95% CI, 1.04 to 1.17). However, in covariate adjusted analyses, urinary tract stones were not significantly related to changes in BMD at any skeletal site or to incident fractures. In conclusion, urinary tract stones in postmenopausal women are not an independent risk factor for osteoporosis. © 2015 American Society for Bone and Mineral Research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/115895/1/jbmr2553.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/115895/2/jbmr2553_am.pd

    Site-specific ubiquitination exposes a linear motif to promote interferon-α receptor endocytosis

    Get PDF
    Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-α/β receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCFβTrcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    Interleukin‐1 Blockade Inhibits the Acute Inflammatory Response in Patients With ST‐Segment–Elevation Myocardial Infarction

    Get PDF
    Background ST‐segment–elevation myocardial infarction is associated with an intense acute inflammatory response and risk of heart failure. We tested whether interleukin‐1 blockade with anakinra significantly reduced the area under the curve for hsCRP (high sensitivity C‐reactive protein) levels during the first 14 days in patients with ST‐segment–elevation myocardial infarction (VCUART3 [Virginia Commonwealth University Anakinra Remodeling Trial 3]). Methods and Results We conducted a randomized, placebo‐controlled, double‐blind, clinical trial in 99 patients with ST‐segment–elevation myocardial infarction in which patients were assigned to 2 weeks treatment with anakinra once daily (N=33), anakinra twice daily (N=31), or placebo (N=35). hsCRP area under the curve was significantly lower in patients receiving anakinra versus placebo (median, 67 [interquartile range, 39–120] versus 214 [interquartile range, 131–394] mg·day/L; P\u3c0.001), without significant differences between the anakinra arms. No significant differences were found between anakinra and placebo groups in the interval changes in left ventricular end‐systolic volume (median, 1.4 [interquartile range, −9.8 to 9.8] versus −3.9 [interquartile range, −15.4 to 1.4] mL; P=0.21) or left ventricular ejection fraction (median, 3.9% [interquartile range, −1.6% to 10.2%] versus 2.7% [interquartile range, −1.8% to 9.3%]; P=0.61) at 12 months. The incidence of death or new‐onset heart failure or of death and hospitalization for heart failure was significantly lower with anakinra versus placebo (9.4% versus 25.7% [P=0.046] and 0% versus 11.4% [P=0.011], respectively), without difference between the anakinra arms. The incidence of serious infection was not different between anakinra and placebo groups (14% versus 14%; P=0.98). Injection site reactions occurred more frequently in patients receiving anakinra (22%) versus placebo (3%; P=0.016). Conclusions In patients presenting with ST‐segment–elevation myocardial infarction, interleukin‐1 blockade with anakinra significantly reduces the systemic inflammatory response compared with placebo. Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT01950299

    Altitude Acclimatization Alleviates the Hypoxia-Induced Suppression of Exogenous Glucose Oxidation During Steady-State Aerobic Exercise

    Get PDF
    This study investigated how high-altitude (HA, 4300 m) acclimatization affected exogenous glucose oxidation during aerobic exercise. Sea-level (SL) residents (n = 14 men) performed 80-min, metabolically matched exercise (V˙O2 ∼ 1.7 L/min) at SL and at HA < 5 h after arrival (acute HA, AHA) and following 22-d of HA acclimatization (chronic HA, CHA). During HA acclimatization, participants sustained a controlled negative energy balance (-40%) to simulate the “real world” conditions that lowlanders typically experience during HA sojourns. During exercise, participants consumed carbohydrate (CHO, n = 8, 65.25 g fructose + 79.75 g glucose, 1.8 g carbohydrate/min) or placebo (PLA, n = 6). Total carbohydrate oxidation was determined by indirect calorimetry and exogenous glucose oxidation by tracer technique with 13C. Participants lost (P ≤ 0.05, mean ± SD) 7.9 ± 1.9 kg body mass during the HA acclimatization and energy deficit period. In CHO, total exogenous glucose oxidized during the final 40 min of exercise was lower (P < 0.01) at AHA (7.4 ± 3.7 g) than SL (15.3 ± 2.2 g) and CHA (12.4 ± 2.3 g), but there were no differences between SL and CHA. Blood glucose and insulin increased (P ≤ 0.05) during the first 20 min of exercise in CHO, but not PLA. In CHO, glucose declined to pre-exercise concentrations as exercise continued at SL, but remained elevated (P ≤ 0.05) throughout exercise at AHA and CHA. Insulin increased during exercise in CHO, but the increase was greater (P ≤ 0.05) at AHA than at SL and CHA, which did not differ. Thus, while acute hypoxia suppressed exogenous glucose oxidation during steady-state aerobic exercise, that hypoxic suppression is alleviated following altitude acclimatization and concomitant negative energy balance
    corecore