98 research outputs found

    Final State Interaction Effects in \u3csup\u3e3\u3c/sup\u3eHe (e→, e\u27 p)

    Get PDF
    Asymmetries in quasi-elastic 3He(e→, e \u27p) have been measured at a momentum transfer of 0.67 (GeV/c)2 and are compared to a calculation which takes into account relativistic kinematics in the final state and a relativistic one-body current operator. With an exact solution of the Faddeev equation for the 3He-ground state and an approximate treatment offinal state interactions in the continuum good agreement is found with the experimental data

    The Neutron Charge Form Factor and Target Analyzing Powers From \u3csup\u3e3\u3c/sup\u3eHe (e→, e \u27n) Scattering

    Get PDF
    The charge form factor of the neutron has been determined from asymmetries measured in quasi-elastic 3He(e→, e \u27n) at a momentum transfer of 0.67 (GeV/c)2. In addition, the target analyzing power, Ayo has been measured to study effects of final state interactions and mespn exchange currents

    Correlated Strength in Nuclear Spectral Function

    Full text link
    We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory.Comment: 4 pages, 2 figures, accepted by Phys. Rev. Let

    Final State Interaction Effects in pol 3He(pol e,e'p)

    Get PDF
    Asymmetries in quasi-elastic pol 3He(pol e,e'p) have been measured at a momentum transfer of 0.67 (GeV/c)^2 and are compared to a calculation which takes into account relativistic kinematics in the final state and a relativistic one-body current operator. With an exact solution of the Faddeev equation for the 3He-ground state and an approximate treatment of final state interactions in the continuum good agreement is found with the experimental data.Comment: 11 pages, 6 figures, submitted to Phys. Lett. B, revised version, sensitivity study to relativity and NN-potential adde

    Probing Quark-Gluon Interactions with Transverse Polarized Scattering

    Full text link
    We have extracted QCD matrix elements from our data on double polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element \tilde{d_2}, which arises strictly from quark- gluon interactions, to be unambiguously non zero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham Sum rule is valid. The fundamental Bjorken sum rule obtained from the a0 matrix element is satisfied at our low momentum transfer.Comment: formerly "Nachtmann Moments of the Proton and Deuteron Spin Structure Functions

    Proton Spin Structure in the Resonance Region

    Get PDF
    We have examined the spin structure of the proton in the region of the nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum transfer of Q^2 = 1.3 GeV^2. Using the Jefferson Lab polarized electron beam, a spectrometer, and a polarized solid target, we measured the asymmetries A_parallel and A_perp to high precision, and extracted the asymmetries A_1 and A_2, and the spin structure functions g_1 and g_2. We found a notably non-zero A_perp, significant contributions from higher-twist effects, and only weak support for polarized quark--hadron duality.Comment: 6 pages, 4 figures, REVTeX4, similar to PRL submission, plots colorized and appenix added, v3: minor edit, matches PR

    Proton G_E/G_M from beam-target asymmetry

    Full text link
    The ratio of the proton's electric to magnetic form factor, G_E/G_M, can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G_E/G_M by cross sections and recoil polarization observables disagree for Q^2 > 1 (GeV/c)^2. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q^2 = 1.51 (GeV/c)^2 for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q^2 at which G_E/G_M has been determined by a beam-target asymmetry experiment. The result, \muG_E/G_M = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data.Comment: 8 pages, 6 figures, Updated to be version published in Physical Review

    Measurement of the Electric Form Factor of the Neutron at Q^2=0.5 and 1.0 (GeV/c)^2

    Full text link
    The electric form factor of the neutron was determined from measurements of the \vec{d}(\vec{e},e' n)p reaction for quasielastic kinematics. Polarized electrons were scattered off a polarized deuterated ammonia target in which the deuteron polarization was perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle detector. We find G_E^n = 0.0526 +/- 0.0033 (stat) +/- 0.0026 (sys) and 0.0454 +/- 0.0054 +/- 0.0037 at Q^2 = 0.5 and 1.0 (GeV/c)^2, respectively.Comment: 5 pages, 2 figures, as publishe

    Measurement of the asymmetries in 3He→ \overrightarrow{\sf He}(¯e, e′p)d and 3He→ \overrightarrow{\sf He}(¯e, e′p)np

    Get PDF
    Abstract.: The electron target asymmetries A || and A⊥ with target spin parallel and perpendicular to the momentum transfer \ensuremath{\boldsymbol{q}} were measured for both the two- and three-body breakup of 3He in the 3 He→ \overrightarrow{\rm He} (¯e, e'p)-reaction. Polarized electrons were scattered off polarized 3He in the quasielastic regime in parallel kinematics with the scattered electron and the knocked-out proton detected using the Three-Spectrometer Facility at MAMI. The results are compared to Faddeev calculations which take into account Final-State Interactions as well as Meson Exchange Currents. The experiment confirms the prediction of a large effect of Final-State Interactions in the asymmetry of the three-body breakup and of an almost negligible one for the two-body breaku
    • …
    corecore