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Abstract

The charge form factor of the neutron has been determined from asymmetries measured in quasi-elastic3−→
He(�e,e′n) at a

momentum transfer of 0.67 (GeV/c)2. In addition, the target analyzing power,Ao
y , has been measured to study effects of final

state interactions and meson exchange currents.
 2003 Published by Elsevier B.V.
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1. Introduction

The form factors of the nucleon are fundamental
observables. Precise data allow for sensitive tests of
the theory of the strong interaction—quantum chro-
modynamics (QCD)—in the non-perturbative regime.
A complete study of the theoretical concepts requires
measurements not only for the proton but also for the
neutron. Accurate data at low momentum transfer are
also required for the calculation of nuclear form fac-
tors.

Due to the lack of a free neutron target only
neutrons bound in light nuclei can be studied. In this
case, determinations of the charge,Gen, and magnetic,
Gmn, form factor from elastic or quasi-elastic cross
section data via the Rosenbluth technique do not lead
to data with the desired precision. The subtraction of
the proton contribution, theoretical corrections due to
the unfolding of the nuclear structure and corrections
to final state interaction (FSI) and meson-exchange
currents (MEC) limit the accuracy to∼ 30%.

Measurements of precise data of the neutron form
factors became possible by means of alternative tech-
niques exploiting polarized electron beams and polar-
ized targets or recoil polarimeters. The technique to
determineGen with a precision of<10% relies on
asymmetry measurements in quasi-free(e,e′n) coinci-
dence experiments in which the asymmetry is given by
the interference term and is proportional toGen · Gmn
in the plane wave impulse approximation (PWIA). The
small contribution ofGen is amplified by the large
value of Gmn and a measurement of the asymmetry
allows for significant improvements in the precision
[1–3]. The continuous wave (cw) electron beams avail-
able today allowed for the determination ofGmn with
accuracies of∼ 2% [4].

Because of its low binding energy, the deuteron is
usually employed for studies of neutron properties.
However, for polarization studies3He is particularly
suitable due to the fact that for the major part of the
ground state wave function the spins of the two pro-
tons are coupled antiparallel, so that spin-dependent
observables are dominated by the neutron [5]. In ad-
dition, at least at lowQ2, corrections due to nu-
clear structure effects, FSI, and MEC can be calcu-
lated using modern three-body calculations. These cal-
culations allow for a quantitative description of the

three-nucleon system with similar precision as for the
deuteron [6,7].

The asymmetry in double polarization experiments
is determined with

(1)A(θ∗, φ∗) = 1

PePt

N+ − N−

N+ + N− ,

whereθ∗, φ∗ are the polar and the azimuthal angle
of the target spin direction with respect to the three
momentum transfer�q. The polarizations of beam and
target are given byPe and Pt and the normalized
3−→
He(�e,e′n) events for positive (negative) electron he-

licity are N+ (N−). With the target spin orientation
parallel and perpendicular to�q two independent asym-
metriesA‖ = A(0◦,0◦) andA⊥ = A(90◦,0◦) can be
measured. In PWIAGen can then be determined via

(2)GPWIA
en = b

a
· Gmn

(PePtV )‖
(PePtV )⊥

A⊥
A‖

,

with the kinematical factorsa andb [8]. The factorV
accounts for a possible dilution due to contributions
with vanishing asymmetry. AsPe , Pt , andV do not
depend on the target spin orientation they cancel in
principle in the determination ofGPWIA

en . In practice,
A‖ and A⊥ are measured in sequence, as suchPe

and/or Pt may change during the two asymmetry
measurements. It will be discussed below that such
changes are measured and accounted for.

In order to study the FSI-corrections necessary for
the determination ofGen the target analyzing power
Ao

y provides an experimental quantity that is sensitive
to these effects. For an unpolarized beam and the target
spin aligned perpendicular to the scattering plane the
target analyzing power can be measured with

(3)Ao
y = 1

Pt

N↑ − N↓

N↑ + N↓

whereN↑ (N↓) are the normalized3
−→
He(�e,e′N) events

for target spin aligned parallel (antiparallel) to the
normal of the scattering plane. For coplanar scattering
Ao

y is identical to zero in PWIA due to the combination
of time reversal invariance and hermiticity of the
transition matrix [9]. Thus, a non-zero value ofAo

y

signals FSI and MEC effects and its measurement
provides a check of the calculation of these effects.

The present Letter reports about a new determi-
nation ofGen from measurements ofA⊥ andA‖ of
3−→
He(�e,e′n) scattering at a four-momentum transfer of
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Q2 = 0.67 (GeV/c)2. The same kinematics is chosen
as for the measurements by Rohe et al. [10]. In addi-
tion, the same technique and almost the same appa-
ratus is employed which allows to combine the data
reducing the statistical error bar ofGen by almost a
factor of two.

Consequently, the improved precision requires a
careful determination of FSI and MEC effects. Target
analyzing powersAo

y have been measured at the same

Q2 and atQ2 = 0.37 (GeV/c)2 in order to properly
determine FSI and MEC corrections of the combined
result.

2. Experimental setup

At the Mainz Microtron (MAMI) [11] longitudi-
nally polarized electrons with a polarization of∼ 0.8
were produced with a strained layer GaAsP crystal at
a typical current of 10 µA [12]. The polarized cw elec-
tron beam was accelerated to an energy of 854.5 MeV
and guided to the three-spectrometer hall [13]. The
3−→
He target consisted of a spherical glass container

with two cylindrical extentions sealed with oxygen-
free 25 µm Cu windows. Coating the glass container
with Cs led to relaxation times of about 80 h. The Cu
windows were positioned outside of the acceptance of
the spectrometer (∼ 5 cm) and shielded with Pb blocks
to minimize background from beam–window interac-
tions. The3He target was polarized via metastable op-
tical pumping to a typical polarization of 0.5 and com-
pressed to an operating pressure of 4 bar [14].

Spectrometer A with a solid angle of 28 msr and
a momentum acceptance of 20% was used to detect
the quasi-elastically scattered electrons at a scattering
angle of 78.6◦. The recoiling nucleons were detected
in coincidence with an array of plastic scintillator bars
placed at 32.2◦, the direction of�q for the maximum of
the quasi-elastic peak.

The hadron detector consisted of an array of four
layers of five plastic scintillator bars with dimensions
50× 10× 10 cm3 preceded by two 1 cm thick�E

detectors for particle identification. The detector was
placed at a distance of 160 cm from the target, re-
sulting in a solid angle of 100 msr. The neutron effi-
ciency during the present experiment was determined
to 18.3%. The entire detector was shielded with 10 cm

Pb except for an opening towards the target were the
Pb shield was reduced to 2 cm.

The entire3−→
He target was enclosed in a rectangular

box of 2 mm thick µ-metal and iron. The box
served as an effective shield for the stray field of the
magnetic spectrometers and provided a homogeneous
magnetic guiding field of≈ 4 × 10−4 T produced
by three independent pairs of coils. With additional
correction coils a relative field gradient of less than
5 × 10−4 cm−1 was achieved. The setup also allowed
for an independent rotation of the target spin in any
desired direction with an accuracy of 0.1◦ by remote
control.

The product of target and beam polarization was
monitored during the data taking via determination
of the asymmetry for elastic3

−→
He(�e,e) scattering for

which the form factors, hence the asymmetries, are
accurately known [15]. The analysis of these data
resulted in a polarization product of 0.279± 0.010 for
runs withA = |A‖| and 0.282± 0.003 forA = |A⊥|.
The different error bar results from the sensitivity of
elastic scattering to the target spin direction.

In addition, the time-dependence of the polarization
of the target cell was continuously measured during
the experiment by Nuclear Magnetic Resonance, while
the absolute polarization was measured by the method
of Adiabatic Fast Passage [16]. The mean target
polarization from these measurements was 0.356±
0.015. From the elastic scattering data and the target
polarization measurements a beam polarization of
Pe = 0.788± 0.036 was extracted which agreed well
with the determination with a Møller polarimeter
(0.827± 0.017).

3. Determination of Gen

To determineGen the asymmetriesA⊥ andA‖ of
3−→
He(�e,e′n) have been measured. The same kinematics

was chosen as in [10] with the motivation to combine
the two measurements hereby decreasing the statistical
error bar ofGen.

In the analysis of the data the neutron is identified
with a cut on the coincidence time and the absence of a
hit in the�E amplitude spectrum for two consecutive
�E detectors. Neutrons from (p, n) charge exchange
in the Pb-shielding contribute in first order to the dilu-
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tion factorV , but the effect cancels in the determina-
tion of Gen through Eq. (2).

In order to minimize the dependence on the target
polarization, data were accumulated alternatively for
A⊥ and A‖ at regular intervals by corresponding
rotations of the target spin. The polarization ratio that
enters in the determination ofGen (see Eq. (2)) was
unity within 2.6%.

Experimental corrections have been determined
via Monte Carlo simulation of the experiment based
on PWIA with the momentum distribution compiled
by Jans et al. [17]. Accounting for energy loss via
bremsstrahlung and for asymmetric angle and momen-
tum acceptances of the spectrometer and the hadron
detector can be reliably done [10]. The dominant cor-
rection is due to the asymmetric acceptance of the
electron spectrometer which leads to an angle shift
of �q. The resultant effect is an enhancement of the
measuredA⊥ value due to the contribution propor-
tional to G2

mn. Bremsstrahlung and missing energy
lead to a similar effect. The total correction from these
effects amounts to−7.4± 3.0%.

Finally, the value for the magnetic form factor re-
quired for the determination ofGen is taken from
the parameterization by Kubon et al. [4] withGmn =
(1.037± 0.012)µnGD whereµn is the magnetic mo-
ment of the neutron in units of nuclear magnetons and
GD the dipole form factor. The resulting experimental
value isGPWIA

en = 0.0416± 0.0102stat± 0.0024syst.
This value is in good agreement with the value by

Rohe et al. [10]. A weighted average of the two values
leads toGPWIA

en = 0.0468± 0.0064stat ± 0.0027syst
which corresponds to a reduction of the statistical error
bar by almost a factor of two.

4. Target analyzing power

The target analyzing powerAo
y has been measured

for 3−→
He(e,e′n) and3−→

He(e,e′p) atQ2 = 0.67 (GeV/c)2

(the kinematics of theGen measurement) and at
0.37 (GeV/c)2. The measurement at 0.37 (GeV/c)2

was performed by lowering the beam energy to
600 MeV as the geometrical constraints of the target
shielding box and the hadron detector did not per-
mit a change of the scattering or recoil angle. An
unpolarized beam was used and the target spin was

aligned perpendicular to the scattering plane and re-
versed every 2 minutes.

The analysis of theAo
y data is very similar to the

one described above. Electrons are accepted for energy
transfersω = 225–290 MeV (314–408 MeV) for the
low (high) Q2-point. The hadron is identified with a
cut on the coincidence time and the�E amplitude
spectrum.

Contrary to the determination ofGPWIA
en , dilution

effects do not cancel forAo
y and have to be determined.

The 2 cm Pb absorber of the hadron detector leads
to misidentified proton/neutron events due to charge
exchange scattering in the Pb absorber. The 3 times
larger e–p cross section and the 5 times larger effi-
ciency of the hadron detector for protons leads to a
dilution effect that is negligible forAo

y(e,e′p)
but must

be taken into account forAo
y(e,e′n)

.
The correction was measured by replacing the

3He gas in the target with hydrogen and tagging the
recoil protons with the elastically scattered electrons.
The fraction of protons, misidentified as neutrons
amounts to 0.18 ± 0.01 (0.13 ± 0.01) for the low
(high) Q2-point. An additional contribution results
from the uncorrelated background in the coincidence
time spectrum determined to 0.056 (0.025) for the
(e,e′n) events.

The Ao
y(e,e′n)

values have been corrected accord-
ing to

(4)Ao
y(e,e′n) = Ao

y total − xAo
y back

1− x

with x the total fraction of background events,Ao
y back

its analyzing power andAo
y total the analyzing power of

the total(e,e′n) yields.
The corrected experimental results forAo

y are
shown in Table 1. Total error bars are given. The errors
are dominated by statistics with a small contribution
of systematic errors due to false asymmetries and
polarization measurements.

For both(e,e′n) and(e,e′p) the agreement of the
experimental values atQ2 = 0.37 (GeV/c)2 with the
result of a complete calculation by Golak et al. [18] is
quite satisfactory. Neglecting the contribution of MEC
in the calculation has little effect onAo

y for (e,e′n).
On the other hand, a calculation for(e,e′n) was also
performed setting the proton form factorsGep and
Gmp to zero. As can be seen from Table 1 the effect
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Table 1
Results ofAo

y for the 3−→
He(e,e′n) and 3−→

He(e,e′p) reactions. The

experimental data atQ2 = 0.37 (GeV/c)2 are compared to results
of a complete Faddeev calculation. For(e,e′n) the effects of
dropping different contributions in the calculation are also shown

Q2 (GeV/c)2 0.37 0.67
3−→
He(e,e′n):

Experiment 0.144± 0.034 0.028± 0.010
Theory 0.178
Theory without MEC 0.186
Theory withGep= Gmp = 0 0.004
3−→
He(e,e′p):

Experiment −0.025± 0.005 −0.016± 0.005
Theory −0.017

is quite dramatic suggesting that 98% of the FSI effect
measured withAo

y(e,e′n)
results from a coupling of the

virtual photon to the proton followed by a (p, n) charge
exchange reaction in the three-body system.

A similar theoretical study is not possible atQ2 =
0.67 (GeV/c)2 due to the non-relativistic nature of
present day calculations and the fact that the trans-
ferred energy is well above the pion production thresh-
old.

5. FSI corrections of Gen

For the same reason the FSI effects inA⊥/A‖
which are needed as corrections to determineGen
cannot be calculated at thisQ2 using today’s non-
relativistic Faddeev codes. However, we will discuss
in the following that with the measurements ofAo

y and
the measurements by Carasco et al. [19] a reliable es-
timate of the effects can be made. In this approach, we
first determineGPWIA

en which accounts for relativistic
kinematics—the only significant relativistic effect to
consider at thisQ2 [19]—and then apply the FSI cor-
rections based on the acquired experimental informa-
tion.

Two effects contribute to the FSI correction and
have to be considered at first order. First, the photon
couples to one of the protons followed by a charge ex-
change process in the three-body system simulating an
(e,e′n) event. AtQ2 = 0.37 (GeV/c)2 the complete
Faddeev calculation by Golak et al. [18] which suc-
cessfully predictedAo

y predicts a total FSI effect for
the ratioA⊥/A‖ of 25%. The calculations also show

that the charge exchange process which is responsible
for 98% ofAo

y amounts to 60% of the total FSI effect
in A⊥/A‖.

The ratio of the elementary cross sectionsσep/σen,
which is a measure for the probability of the pho-
ton coupling to a proton or a neutron is similar at
Q2 of 0.37 (GeV/c)2 and 0.67 (GeV/c)2. We there-
fore assume that the charge exchange process also
contributes with 60% to the FSI effect inA⊥/A‖ at
0.67 (GeV/c)2.

With the experimental knowledge ofAo
y at both

Q2 values the contribution of the charge exchange
processes inA⊥/A‖ can be determined with the ratio
of the experimentalAo

y values scaling the effect to

0.67 (GeV/c)2. This results in a FSI correction of 3%
in Gen.

Second, the photon couples to the neutron followed
by a rescattering process in the three-body continuum
which may also lead to FSI effects. The effect for
this type of FSI inA‖ and A⊥ of (e,e′p) has been
discussed in detail by Carasco et al. [19]. The results
of a calculation which treats only the FSI between
the two (slow) spectator nucleons agree well with
the experimental data. The same calculation has been
used to computeA‖ andA⊥ of (e,e′n). Contrary to
the significant FSI effect forA⊥ and A‖ of (e,e′p)

observed in [19] the corresponding contribution is
small for the asymmetries of(e,e′n). The resulting FSI

Fig. 1. Experimental results ofGen. Shown are the results from
double-polarization experiments, the present result (•), [20] (�),
[21] (�), [22] (�), [23] (�), and [24] (�), and the results from
the elastic quadrupole form factor [25], (�). The solid line is the
parameterization by Galster [26].
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effect of this process averaged over the accepted phase
space is 0.4% inGen.

Thus, we conclude that the total FSI correction
to Gen at 0.67 (GeV/c)2 is small (of the order of
3.4%) and dominated by charge-exchange processes.
The correction is accounted for in the final result
with a relative uncertainty of 50% added in quadra-
ture to the quadratic sum of the experimental uncer-
tainties of the combinedGen result. The final value of
Gen= 0.0484± 0.0071 is shown in Fig. 1. This result
is in excellent agreement with theGen values deduced
from the quadrupole form factor of elastic e–d scatter-
ing [25].

6. Conclusions

In the present experiment,Gen has been measured
via the double polarization reaction3−→

He(�e,e′n). It has
greatly improved the accuracy of our knowledge of
Gen from such measurements atQ2 = 0.67 (GeV/c)2.
The applied contribution from FSI is estimated as
(3.4 ± 1.7)% at this highQ2 which is considerably
smaller than the statistical uncertainty. The good
agreement of the final value ofGen= 0.0484±0.0071
with data from other double polarization experiments
corrected for FSI is very satisfactory. The value for
Gen also agrees well withGen values extracted from
the quadrupole form factor determined in elastic e–d
scattering.
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