713 research outputs found

    Circumstellar Disks in the Outer Galaxy: the Star-Forming Region NGC 1893

    Get PDF
    It is still debated whether star formation process depends on environment. In particular it is yet unclear whether star formation in the outer Galaxy, where the environmental conditions are, theoretically, less conducive, occurs in the same way as in the inner Galaxy. We investigate the population of NGC1893, a young cluster ~3-4 Myr in the outer part of the Galaxy (galactic radius >11 Kpc), to explore the effects of environmental conditions on star forming regions. We present infrared observations acquired using the IRAC camera onboard the Spitzer Space Telescope and analyze the color-color diagrams to establish the membership of stars with excesses. We also merge this information with that obtained from Chandra ACIS-I observations, to identify the Class III population. We find that the cluster is very rich, with 242 PMS Classical T-Tauri stars and 7 Class 0/I stars. We identify 110 Class III candidate cluster members in the ACIS-I field of view. We estimate a disk fraction for NGC1893 of about 67%, similar to fractions calculated for nearby star forming regions of the same age. Although environmental conditions are unfavorable, star formation can clearly be very successful in the outer Galaxy, allowing creation of a very rich cluster like NGC1893.Comment: 10 pages,7 figures,4 table

    X-ray flares on the UV Ceti-type star CC Eridani: a "peculiar" time-evolution of spectral parameters

    Full text link
    Context: Weak flares are supposed to be an important heating agent of the outer layers of stellar atmospheres. However, due to instrumental limitations, only large X-ray flares have been studied in detail until now. Aims: We used an XMM-Newton observation of the very active BY-Dra type binary star CC Eri in order to investigate the properties of two flares that are weaker than those typically studied in the literature. Methods: We performed time-resolved spectroscopy of the data taken with the EPIC-PN CCD camera. A multi-temperature model was used to fit the spectra. We inferred the size of the flaring loops using the density-temperature diagram. The loop scaling laws were applied for deriving physical parameters of the flaring plasma. We also estimated the number of loops involved in the observed flares. Results: A large X-ray variability was found. Spectral analysis showed that all the regions in the light curve, including the flare segments, are well-described by a 3-T model with variable emission measures but, surprisingly, with constant temperatures (values of 3, 10 and 22 MK). The analysed flares lasted ~ 3.4 and 7.1 ks, with flux increases of factors 1.5-1.9. They occurred in arcades made of a few tens of similar coronal loops. The size of the flaring loops is much smaller than the distance between the stellar surfaces in the binary system, and even smaller than the radius of each of the stars. The obtained results are consistent with the following ideas: (i) the whole X-ray light curve of CC Eri could be the result of a superposition of multiple low-energy flares, and (ii) stellar flares can be scaled-up versions of solar flares.Comment: 14 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    The Great Flare of 2021 November 19 on AD Leonis: Simultaneous XMM-Newton and TESS observations

    Get PDF
    We present a detailed analysis of a superflare on the active M dwarf star AD Leonis. The event presents a rare case of a stellar flare that was simultaneously observed in X-rays (with XMM-Newton) and in the optical (with the Transiting Exoplanet Survey Satellite, TESS). The radiated energy in the 0.2 - 12 keV X-ray band (1.26 +/- 0.01 x 10(33) erg) and the bolometric value (E-F,E-bol=5.57 +/- 0.03 x 10(33) erg) place this event at the lower end of the superflare class. The exceptional photon statistics deriving from the proximity of AD Leo has enabled measurements in the 1 - 8 angstrom GOES band for the peak flux (X1445 class) and integrated energy (E-F,E-GOES=4.30 +/- 0.05 x 10(32) erg), which enables a direct comparison with data on flares from our Sun. From extrapolations of empirical relations for solar flares, we estimate that a proton flux of at least 10(5)cm(-2)s(-1)sr(-1) accompanied the radiative output. With a time lag of 300 s between the peak of the TESS white-light flare and the GOES band flare peak as well as a clear Neupert effect, this event follows the standard (solar) flare scenario very closely. Time-resolved spectroscopy during the X-ray flare reveals, in addition to the time evolution of plasma temperature and emission measure, a temporary increase in electron density and elemental abundances, and a loop that extends into the corona by 13% of the stellar radius (4 x 10(9) cm). Independent estimates of the footprint area of the flare from TESS and XMM-Newton data suggest a high temperature of the optical flare (25000 K), but we consider it more likely that the optical and X-ray flare areas represent physically distinct regions in the atmosphere of AD Leo

    Activity and Rotation in the young cluster h Per

    Get PDF
    We study the stellar rotation-activity relation in the crucial age at which stars reach the fastest rotation. To this aim we have analyzed data of the young cluster h Per, very rich and compact, located at 2300 pc, that at an age of 13 Myr should be mainly composed of stars that have ended their contraction phase and that have not lost significant angular momentum viamagnetic breaking. To constrain the activity level of h Per members we have analyzed a deep Chandra/ACIS-I observation. Rotational periods of h Per members have been derived by Moraux et al. (2013) in the framework of the MONITOR project (Aigrain et al. 2007; Irwin et al. 2007). In the Chandra observation we have detected 1010 X-ray sources located in the central field of h Persei. Assuming a distance of 2300 pc their X-ray luminosity ranges between 2x10^29 and 6x10^31 erg/s. Among the 1010 x-ray sources ~600 have as optical counterpart candidate members of the cluster with masses ranging down to 0.3 solar mass, and Ëś150 have also measured rotational period. For this sample of Ëś150 h Per members we have compared X-ray luminosity and rotational periods for different mass ranges. We have found that solar type stars (~1.3 solar mass) show evidence of supersaturation for short periods. This phenomenon is unobserved for lower mass stars

    Scanning Electron Microscopy, X-Ray Microanalysis and Immunohistochemistry on Worn Soft Contact Lenses

    Get PDF
    The deposits accumulated on the surfaces of soft contact lenses are a cause of problems for the wearer of these lenses, as the deposits are never completely removed by the available washing solutions. Therefore it appears of interest to investigate the composition of these deposits. In this paper we review the major findings in the literature and, in addition, present our personal experience. We have studied new, continuously and daily worn soft contact lenses by scanning electron microscopy (SEM), X-ray microanalysis and immunohistochemistry. We have carefully evaluated preparative methods, and we can conclude that SEM and X-ray microanalysis are best carried out on unfixed, air-dried lenses. The deposits present consist mainly of mucus, especially on the tarsal side of the lenses. Chloride and potassium, coming from the tear fluid, as well as sulfur, derived from proteins, were found. Calcium was very rarely detected. IgG, IgA, IgE and C3c complement fractions were found only on the outer surfaces and not within the lens. We believe that the best characterization of the deposits is achieved by means of correlative techniques on the same lens. In fact, this approach integrates morphology and composition

    UNA PANORAMICA SULL\u2019ANEMIA SIDEROPENICA NEGLI ATLETI/AN OVERVIEW ON IRON DEFICIENCY ANEMIA IN ATHLETES

    Get PDF
    Diversi studi in letteratura riportano come la capacit\ue0 prestativa degli atleti di endurance sia fortemente compromessa in seguito all\u2019insorgenza di anemia sideropenica. Questa, infatti, \ue8 una delle pi\uf9 importanti cause di overtraining negli atleti che pratica attivit\ue0 sportive di lunga durata come: la maratona, la marcia, il ciclismo. Tra le diverse cause di anemia ferropriva ricordiamo: una dieta inadeguata a soddisfare le richieste di ferro dell\u2019organismo, una riduzione dell\u2019assorbimento di ferro a livello intestinale e/o un\u2019eccessiva perdita di questo elemento da parte dell\u2019atleta. Il controllo periodico tramite analisi ematochimiche, metaboliche e funzionali potrebbe essere un valido strumento per individuare precocemente il rischio di insorgenza di anemia negli atleti. Una diagnosi precoce di anemia o del rischio di sviluppare questo pericoloso quadro fisiopatologico potrebbe, infatti, aiutare il tecnico e lo staff medico a rimodulare il carico di lavoro e il regime alimentare dell\u2019atleta a rischio.Several studies showed that athletes\u2019 endurance performance is reduced following the onset of iron deficiency anemia. It, indeed, is one of the main causes of overtraining in athletes who play endurance sports, such as marathon, walking race, cycling. Causes of iron deficiency anemia include: inadequate amounts of iron to meet body demands, decreased absorption of iron from gut and/or excessive loss of iron from athlete\u2019s body. Periodic monitoring evaluation process by ematochemical metabolic and functional analysis could be a valid tool to early identify the risk of anemia in athletes. Early diagnosis of anemia or of the risk of developing this dangerous physiopathological phenomenon could help the technical and medical staff modulate the workload and athlete\u2019s diet at risk of anemia

    Characterization of Mucus Glycoconjugates in Normal Human Conjunctiva by Lectins in Light Microscopy, Transmission and Scanning Electron Microscopy

    Get PDF
    Maintenance of tear film in normal conditions is dependent on 1) mucus layer integrity and 2) the presence and distribution of conjunctival epithelial cell microvilli. In the present work a new methodology has been developed to gain correlative information about microprojection assessment and mucus composition, from the same specimen, by Light Microscopy (LM), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). We have characterized the glycosidic residues secreted by goblet cells in normal human conjunctiva, by means of four lectins (WGA, ConA, PNA and SBA), conjugated with FITC for LM and with colloidal gold for TEM and SEM. The cytochemical reactions were performed on histological sections of paraffin-embedded material and on semithin and ultrathin sections of both Epon embedded material directly processed for TEM and of blocks recovered from SEM and reprocessed for TEM. WGA, ConA, PNA and SBA receptors were found to be constituents of the mucus produced by goblet cells in human conjunctiva. The granules of the so-called second mucus system (SMS) cells were labelled mainly by WGA. A difference in the quality of glycoconjugates between goblet cells and SMS cells has been also demonstrated. Our results provide an improved method to evaluate alterations of tear film that occur in many conjunctival diseases

    Complete X-ray census of Mdwarfs in the solar Neighborhood I. GJ 745 AB: Coronal-hole Stars in the 10 pc Sample

    Full text link
    We have embarked in a systematic study of the X-ray emission in a volume-limited sample of M dwarf stars, in order to explore the full range of activity levels present in their coronae and, thus, to understand the conditions in their outer atmospheres and their possible impact on the circumstellar environment. We identify in a recent catalog of the Gaia objects within 10 pc from the Sun all the stars with spectral type between M0 and M4, and search systematically for X-ray measurements of this sample. To this end, we use both archival data (from ROSAT, XMM-Newton, and from the ROentgen Survey with an Imaging Telescope Array (eROSITA) onboard the Russian Spektrum-Roentgen-Gamma mission) and our own dedicated XMM-Newton observations. To make inferences on the properties of the M dwarf corona we compare the range of their observed X-ray emission levels to the flux radiated by the Sun from different types of magnetic structures: coronal holes, background corona, active regions and cores of active regions. At the current state of our project, with more than 90\% of the 10pc M dwarf sample observed in X-rays, only GJ 745 A has no detection. With an upper limit luminosity of log Lx [erg/s] < 25.4 and an X-ray surface flux of log FX,SURF [erg/cm^2/s] < 3.6 GJ 745 A defines the lower boundary of the X-ray emission level of M dwarfs. Together with its companion GJ 745 B, GJ 745 A it is the only star in this volume-complete sample located in the range of FX,SURF that corresponds to the faintest solar coronal structures, the coronal holes. The ultra-low X-ray emission level of GJ 745 B (log Lx [erg/s] = 25.6 and log FX,SURF [erg/cm^2/s] = 3.8) is entirely attributed to flaring activity, indicating that, while its corona is dominated by coronal holes, at least one magnetically active structure is present and determines the total X-ray brightness and the coronal temperature of the star.Comment: accepted for publication in Astronomy & Astrophysics (A&A

    Hard X-ray flux from low-mass stars in the Cygnus OB2 Association

    Full text link
    Context. The Cygnus OB2 association, the central engine of the Cygnus X star-forming region, is the subject of an extensive INTEGRAL Key Project that will accumulate 6Ms of observations. Analysis of 2Ms of observations by De Becker and co-workers provides the most sensitive limit yet obtained on hard X-ray emission from the cluster. Aims. We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2. We discuss whether such emission needs to be considered in the interpretation of existing and future X-ray observations of the region, and whether such observations might provide insight into the high-energy processes on low-mass pre-main sequence stars. Methods. The total hard X-ray flux from low-mass stars is estimated by assuming the observed soft X-ray emission stems from a superposition of flares. We further assume the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. Results. We estimate the low-mass stellar hard X-ray flux in the 20-40 keV band to lie in the range ~2x10^31-6x10^32 erg/s and discuss some potential biases that might affect this result. Conclusions. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. If this emission could be detected, it would provide insight into the hard X-ray production of large flares on pre-main sequence stars. We highlight the penetrating power of hard X-rays from low-mass stellar populations as a possible pointer to our Galaxy's hidden star-forming clusters and super-clusters using more sensitive observations from future missions.Comment: 5 page
    • …
    corecore