25 research outputs found
Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti
BACKGROUND Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases. Mosquitoes like Drosophila melanogaster possess only a single methylase, DNMT2. DESCRIPTION Here we characterise the methylome of the mosquito Aedes aegypti and examine its relationship to transcription and test the effects of infection with a virulent strain of the endosymbiont Wolbachia on the stability of methylation patterns. CONCLUSION We see that methylation in the A. aegypti genome is associated with reduced transcription and is most common in the promoters of genes relating to regulation of transcription and metabolism. Similar gene classes are also methylated in aphids and honeybees, suggesting either conservation or convergence of methylation patterns. In addition to this evidence of evolutionary stability, we also show that infection with the virulent wMelPop Wolbachia strain induces additional methylation and demethylation events in the genome. While most of these changes seem random with respect to gene function and have no detected effect on transcription, there does appear to be enrichment of genes associated with membrane function. Given that Wolbachia lives within a membrane-bound vacuole of host origin and retains a large number of genes for transporting host amino acids, inorganic ions and ATP despite a severely reduced genome, these changes might represent an evolved strategy for manipulating the host environments for its own gain. Testing for a direct link between these methylation changes and expression, however, will require study across a broader range of developmental stages and tissues with methods that detect splice variants.This research was supported by The National Health and Medical Research Council of Australia. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript
Using bacteria to treat diseases
Introduction: Mosquito-borne diseases such as malaria and dengue fever result in significant morbidity and mortality in developing countries. Vector control is often the most effective strategy to prevent disease transmission and novel methods are required to complement existing insecticide-based strategies. Biological control uses natural predators or pathogens to kill mosquitoes or reduce their capacity to transmit disease. Bacteria such as Wolbachia have been proposed to have the potential to provide effective biological control of mosquitoes.
Areas covered: A review of the potential role of bacteria in the control of mosquito-borne diseases highlighting the advantages and disadvantages of each strategy. In particular, a comprehensive summary of the progress made using the bacterial endosymbiont Wolbachia for dengue control.
Expert opinion: Pathogenic bacteria such as Bti can be used to kill mosquito larvae and several endosymbiotic bacteria such as Asaia could be genetically transformed to alter the mosquito's ability to transmit pathogens. The endosymbiotic bacterium Wolbachia has been successfully introduced into the principal vector of dengue, Aedes aegypti, and induces a variety of phenotypic effects that are predicted to reduce dengue transmission. The release of Wolbachia-infected mosquitoes has been undertaken as part of preliminary trials to determine the applied use of this bacterium for mosquito-borne disease control
Chromobacterium biopesticide exposure does not select for resistance in Aedes mosquitoes
Developing effective tools to control mosquito populations is essential for reducing the incidence of diseases like malaria and dengue. Biopesticides of microbial origin are a rich, underexplored source of mosquitocidal compounds. We previously developed a biopesticide from the bacterium Chromobacterium sp. Panama that rapidly kills vector mosquito larvae, including Aedes aegypti and Anopheles gambiae. Here, we demonstrate that two independent Ae. aegypti colonies exposed to a sublethal dose of that biopesticide over consecutive generations persistently exhibited high mortality and developmental delays, indicating that resistance did not develop during the study period. Critically, the descendants of biopesticide-exposed mosquitoes experienced decreased longevity and did not display increased susceptibility to dengue virus or decreased susceptibility to common chemical insecticides. Through RNA sequencing, we observed no link between biopesticide exposure and the increased activity of xenobiotic metabolism and detoxification genes typically associated with insecticide resistance. These findings indicate that the Chromobacterium biopesticide is an exciting, emerging mosquito control tool. IMPORTANCE: Vector control is an essential part of mitigating diseases caused by pathogens that mosquitoes spread. Modern vector control is highly reliant on using synthetic insecticides to eliminate mosquito populations before they can cause disease. However, many of these populations have become resistant to commonly used insecticides. There is a strong need to explore alternative vector control strategies that aim to mitigate disease burden. Biopesticides, insecticides of biological origin, can have unique mosquitocidal activities, meaning they can effectively kill mosquitoes that are already resistant to other insecticides. We previously developed a highly effective mosquito biopesticide from the bacterium Chromobacterium sp. Csp_P. Here, we investigate whether exposure to a sublethal dose of this Csp_P biopesticide over 9 to 10 generations causes resistance to arise in Aedes aegypti mosquitoes. We find no evidence of resistance at the physiological or molecular levels, confirming that the Csp_P biopesticide is a highly promising new tool for controlling mosquito populations
Wolbachia infection increases recapture rate of field-released Drosophila melanogaster
Wolbachia pipientis is a commonly occurring endosymbiont with well-characterised effects on host reproductive biology associated with its infection of the gonads. Wolbachia infections are also widespread in somatic tissues and consequently they have the potential to play a much broader role in host biology. Recently, Wolbachia was shown to alter the locomotion of Drosophila melanogaster in response to food cues in the laboratory. To determine whether this laboratory-based phenotype might translate to real differences for insects in the field, we performed a simple mark-release-recapture experiment with Wolbachia-infected D. melanogaster in a forested habitat. We demonstrate that infected flies are recaptured at twice the rate of uninfected flies, although infection does not affect the distance traveled by those flies recaptured. The differences in recapture could be explained by infection-induced changes in physiology or behavior. If generalizable, such changes may affect the interpretation of behavioral studies for Wolbachia-infected insects and have potential implications for the dynamics of Wolbachia infections in natural populations, including situations where Wolbachia-infected insects are being released for biological control
Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti
The endosymbiont Wolbachia represents a promising method of dengue control, as it reduces the ability of the primary vector, the mosquito Aedes aegypti, to transmit viruses. When mosquitoes infected with the virulent Wolbachia strain wMelPop are fed non-human blood, there is a drastic reduction in mosquito fecundity and egg viability. Wolbachia has a reduced genome and is clearly dependent on its host for a wide range of nutritional needs. The fitness defects seen in wMelPop-infected A. aegypti could be explained by competition between the mosquito and the symbiont for essential blood meal nutrients, the profiles of which are suboptimal in non-human blood. Here, we examine cholesterol and amino acids as candidate molecules for competition, as they have critical roles in egg structural development and are known to vary between blood sources. We found that Wolbachia infection reduces total cholesterol levels in mosquitoes by 15-25 %. We then showed that cholesterol supplementation of a rat blood meal did not improve fecundity or egg viability deficits. Conversely, amino acid supplementation of sucrose before and after a sheep blood meal led to statistically significant increases in fecundity of approximately 15-20 eggs per female and egg viability of 30-40 %. This mosquito system provides the first empirical evidence of competition between Wolbachia and a host over amino acids and may suggest a general feature of Wolbachia-insect associations. These competitive processes could affect many aspects of host physiology and potentially mosquito fitness, a key concern for Wolbachia-based mosquito biocontrol
Pathogen blocking in Wolbachia-infected Aedes aegypti is not affected by Zika and dengue virus co-infection.
BackgroundWolbachia's ability to restrict arbovirus transmission makes it a promising tool to combat mosquito-transmitted diseases. Wolbachia-infected Aedes aegypti are currently being released in locations such as Brazil, which regularly experience concurrent outbreaks of different arboviruses. A. aegypti can become co-infected with, and transmit multiple arboviruses with one bite, which can complicate patient diagnosis and treatment.Methodology/principle findingsUsing experimental oral infection of A. aegypti and then RT-qPCR, we examined ZIKV/DENV-1 and ZIKV/DENV-3 co-infection in Wolbachia-infected A. aegypti and observed that Wolbachia-infected mosquitoes experienced lower prevalence of infection and viral load than wildtype mosquitoes, even with an extra infecting virus. Critically, ZIKV/DENV co-infection had no significant impact on Wolbachia's ability to reduce viral transmission. Wolbachia infection also strongly altered expression levels of key immune genes Defensin C and Transferrin 1, in a virus-dependent manner.Conclusions/significanceOur results suggest that pathogen interference in Wolbachia-infected A. aegypti is not adversely affected by ZIKV/DENV co-infection, which suggests that Wolbachia-infected A. aegypti will likely prove suitable for controlling mosquito-borne diseases in environments with complex patterns of arbovirus transmission
Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis
A virulent strain of the obligate intracellular bacterium Wolbachia
pipientis that shortens insect lifespan has recently been transinfected
into the primary mosquito vector of dengue virus, Aedes aegypti L.
The microbe's ability to shorten lifespan and spread through host populations
under the action of cytoplasmic incompatibility means it has the potential to
be used as a biocontrol agent to reduce dengue virus transmission.
Wolbachia is present in many host tissues and may have local effects
on diverse biological processes. In other insects, Wolbachia
infections have been shown to alter locomotor activity and response time to
food cues. In mosquitoes, locomotor performance relates to the location of
mates, human hosts, resting sites and oviposition sites. We have therefore
examined the effect of the virulent, life-shortening Wolbachia strain
wMelPop on the locomotion of Ae. aegypti as they age and as
the pathogenicity of the infection increases. In parallel experiments we also
examined CO2 production as a proxy for metabolic rate, to
investigate a potential mechanistic explanation for any changes in locomotion.
Contrary to expectation, we found that the infection increased activity and
metabolic rate and that these effects were relatively consistent over the
insect's lifespan. The results do not fit a standard model of bacterial
pathogenesis in insects, and instead may reveal additional physiological
changes induced by infection, such as either increased hunger or defects in
the nervous system
Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis
A virulent strain of the obligate intracellular bacterium Wolbachia pipientis that shortens insect lifespan has recently been transinfected into the primary mosquito vector of dengue virus, Aedes aegypti L. The microbe's ability to shorten lifespan and spread through host populations under the action of cytoplasmic incompatibility means it has the potential to be used as a biocontrol agent to reduce dengue virus transmission. Wolbachia is present in many host tissues and may have local effects on diverse biological processes. In other insects, Wolbachia infections have been shown to alter locomotor activity and response time to food cues. In mosquitoes, locomotor performance relates to the location of mates, human hosts, resting sites and oviposition sites. We have therefore examined the effect of the virulent, life-shortening Wolbachia strain wMelPop on the locomotion of Ae. aegypti as they age and as the pathogenicity of the infection increases. In parallel experiments we also examined CO2 production as a proxy for metabolic rate, to investigate a potential mechanistic explanation for any changes in locomotion. Contrary to expectation, we found that the infection increased activity and metabolic rate and that these effects were relatively consistent over the insect's lifespan. The results do not fit a standard model of bacterial pathogenesis in insects, and instead may reveal additional physiological changes induced by infection, such as either increased hunger or defects in the nervous system.